帮助 关于我们

返回检索结果

相位恢复算法:原理、发展与应用(特邀)
Phase retrieval algorithms: principles, developments and applications (invited)

查看参考文献180篇

王爱业 1,2,3   潘安 1,2   马彩文 1,2,3   姚保利 1,2  
文摘 研究表明,由于相位比振幅包含更多关于场的信息,因此相位测量在现代科学和工程的诸多分支中始终是研究的热点问题。在可见的电磁波范围内,相位信息很难通过现有的光电探测器直接采集获取。相位恢复技术提供了一种从捕获的强度信息中将相位信息"计算"出来的有效手段,并已成功应用于天文观测、生物医学成像和数字信号复原等多个科学领域。算法是相位恢复技术的核心,也是该技术发展和应用的关键。文中结合物理学原理和信号处理方法对相位恢复算法的基本原理进行阐述,综述了各类相位恢复算法的发展历程及其优缺点,并简单概述了相位恢复算法在光学领域的典型应用,最终指明其面临的挑战和未来的发展趋势:更优异的收敛性能和噪声鲁棒性、恢复更复杂物体相位信息的能力、多目标多任务集成的兼容性。
其他语种文摘 Because the phase contains more information about the field in contrast to the amplitude, phase measurement has always been a hot topic in many branches of modern science and engineering. Within the visible range of electromagnetic wave, it is quite difficult to directly obtain phase information by the existing photodetectors. Phase retrieval provides an effective method to "figure out " the phase information from the captured intensity information, and has achieved successful applications in several scientific fields including astronomical observation, biomedical imaging and digital signal restoration. Algorithm is not only the core of phase retrieval, but is also the key to its development and applications. This paper demonstrates the basic principles of phase retrieval algorithms in combination with physical principles and signal processing methods, summarizes the development of various kinds of algorithms as well as their advantages and disadvantages, and briefly lists some typical applications in the field of optics. Finally, the challenges are pointed out, and the future development directions are described as: better convergence performance and noise robustness, phase-retrieval ability for more complex objects, compatibility for integration of multiple objectives and tasks.
来源 红外与激光工程 ,2022,51(11):20220402 【核心库】
DOI 10.3788/IRLA20220402
关键词 相位恢复 ; 计算成像 ; 信号处理 ; 最优化理论
地址

1. 中国科学院西安光学精密机械研究所, 陕西, 西安, 710119  

2. 中国科学院大学, 北京, 100094  

3. 中国科学院空间精密测量技术重点实验室, 中国科学院空间精密测量技术重点实验室, 陕西, 西安, 710119

语种 中文
文献类型 研究性论文
ISSN 1007-2276
学科 物理学
基金 国家自然科学基金
文献收藏号 CSCD:7417304

参考文献 共 180 共9页

1.  Lax M. From Maxwell to paraxial wave optics. Phys Rev A,1975,11(4):1365-1370 CSCD被引 37    
2.  Cowley J M. Diffraction Physics,1995 CSCD被引 6    
3.  Stratton J A. Electromagnetic Theory,2007 CSCD被引 4    
4.  Hecht E. Optics. 4th ed,2001 CSCD被引 4    
5.  Oppenhein A V. The importance of phase in signals. Proceedings of IEEE,1981,69(5):529-541 CSCD被引 1    
6.  Giloh H. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science,1982,217(4566):1252-1255 CSCD被引 9    
7.  Stephens D J. Light microscopy techniques for live cell imaging. Science,2003,300(5616):82-86 CSCD被引 66    
8.  Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica,1942,9(10):974-986 CSCD被引 16    
9.  Nomarski G. Differential microinterferometer with polarized waves. J Phys Radium,1955,16:9-13 CSCD被引 1    
10.  Park Y. Quantitative phase imaging in biomedicine. Nat Photonics,2018,12(10):578-589 CSCD被引 77    
11.  Jo Y. Quantitative phase imaging and artificial intelligence: A review. IEEE J Sel Top Quantum Electron,2018,25(1):1-14 CSCD被引 14    
12.  Cuche E. Digital holography for quantitative phase-contrast imaging. Opt Lett,1999,24(5):291-293 CSCD被引 87    
13.  Schnars U. Digital recording and numerical reconstruction of holograms. Meas Sci Technol,2002,13(9):R85 CSCD被引 88    
14.  Tahara T. Digital holography and its multidimensional imaging applications: A review. Microscopy,2018,67(2):55-67 CSCD被引 4    
15.  Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen. Zt Instrumentenkd,1990,20(47):17-27 CSCD被引 2    
16.  Shack R V. Production and use of a lecticular hartmann screen. J Opt Soc Am,1971,61:656-661 CSCD被引 4    
17.  Platt B C. History and principles of shack-hartmann wavefront sensing. J Cataract Refr Surg,2001,17(5):S573-S577 CSCD被引 1    
18.  Esposito S. Pyramid wavefront sensor behavior in partial correction adaptive optic systems. Astron Astrophys,2001,369(2):L9-L12 CSCD被引 12    
19.  Ragazzoni R. A pyramid wavefront sensor with no dynamic modulation. Opt Commun,2002,208(1/3):51-60 CSCD被引 14    
20.  Neil M A A. New modal wave-front sensor: A theoretical analysis. J Opt Soc Am A,2000,17(6):1098-1107 CSCD被引 15    
引证文献 5

1 桂博瀚 基于波面分割及多平面相位恢复的定量相位成像技术 光学学报,2023,43(14):1411002
CSCD被引 3

2 孟昕 TIE和角谱迭代用于光学元件表面划痕深度检测 光学学报,2023,43(14):1412002
CSCD被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号