基于微波光子的卫星通信载荷架构及关键技术
Architecture and Key Technologies of Satellite Communication Payload Based on Microwave Photonics
查看参考文献36篇
文摘
|
未来卫星通信正不断向多频段大带宽传输、多粒度柔性交换转发、宽带灵活空间高速组网的方向发展,对卫星通信载荷的处理交换能力以及高速传输能力提出了更高的要求.传统的卫星通信系统通常采用微波技术进行信号的星上处理和转发,在处理速度和传输带宽等方面存在的电子瓶颈,使之难以在兼顾载荷重量、体积和功耗的前提下,实现多频段、大带宽、多粒度、多通道的数据传输和高速率、大容量星间数据交互,因而难以适应未来卫星通信需求.微波光子学融合了微波和光子两大技术,具有工作频带宽、瞬时带宽大、无电磁干扰、接入灵活、体积小、重量轻等特点,基于微波光子学的卫星通信载荷能够利用光学手段克服传统微波技术的电子瓶颈,大幅度提高卫星通信系统的多频段、大带宽通信信号的传输与处理性能,为卫星通信载荷的设计提供了新的思路.本文针对基于传统微波技术的卫星通信所存在的局限性,探索未来新型微波光子卫星通信载荷架构,提出了微波光子通信载荷系统构成和实现方案,重点阐述了宽带光电/电光阵列转换模块、大瞬时带宽微波光子信道化单元及多尺度微波光子柔性交换模块的模块组成及功能结构;在此基础上,进一步研究了宽带低杂散微波光子变频、微波光子密集信道化及光交换矩阵等关键技术,给出相应的解决方案,同时为降低系统体积、重量、功耗,提升系统稳定性,探索了系统的芯片化、集成化技术的可借鉴性思路;随后,针对微波光子载荷的卫星通信载荷在未来卫星通信和空间信息网络中潜在的重要作用,分析展望了基于微波光子载荷的卫星通信应用设想,提出了本地数据处理转发、远距离数据传输转发、分布式星群群内协作处理三种典型数据传输模式,支持Q/V、Ka、Ku等多频段、多带宽、多通道、多业务的微波信号接收及发送,以及高速率、大容量、远距离的激光链路数据交互;最后,对基于微波光子的卫星通信载荷技术的发展路线和有待解决的重难点问题进行了总结和展望,为未来多频段一体化卫星通信载荷的设计和应用提供了重要理论参考和关键技术支撑. |
其他语种文摘
|
Satellite communication is developing towards the direction of multi-frequency and large bandwidth transmission, multi-granularity flexible switching and forwarding, broadband flexible space high-speed networking, which puts forward higher requirements for the processing and switching capacity, and high-speed transmission capacity of satellite communication payloads. Traditional satellite communication systems usually use microwave technology to process and forward signals on the satellite. There are electronic bottlenecks in processing speed and transmission bandwidth, which makes it difficult to achieve multi-frequency, large bandwidth, multi-granularity, multi-channel data transmission and high-speed, high-capacity inter-satellite data interaction under the premise of taking into account the load weight, volume and power consumption, so as to meet the needs of future satellite communications. Microwave photonics combines microwave and photon technologies, and has the characteristics of wide working frequency band, large instantaneous bandwidth, no electromagnetic interference, flexible access, small size, light weight, etc. Satellite communication payloads based on microwave photonics can overcome the electronic bottleneck of traditional microwave technology by optical means, and greatly improve the transmission and processing performance of multi-frequency and large bandwidth communication signals of satellite communication systems. It provides a new idea for the design of satellite communication payload. Aiming at the limitations of satellite communication based on traditional microwave technology, this paper explores the new microwave photonic satellite communication payload architecture in the future, proposes the composition and implementation scheme of microwave photonic communication payload system, and focuses on the module composition and functional structure of broadband optical-electro/electro-optical array conversion module, large instantaneous bandwidth microwave photonics channelization unit, and multi-scale microwave photonics flexible switching module. On this basis, the key technologies such as broadband low stray microwave photonics frequency conversion, microwave photonics intensive channelization and optical switching matrix are further studied, and the corresponding solutions are proposed. At the same time, in order to reduce the system volume, weight, power consumption and improve the system stability, the referential ideas of the chip and integration technologies of the system are explored. Then, in view of the potential important role of satellite communication payloads of microwave photonic payloads in future satellite communications and space information networks, this paper analyzes and prospects the application scenarios of satellite communications based on microwave photonics payloads, and proposes three typical data transmission modes, namely local data processing and forwarding, remote data transmission and forwarding, and collaborative processing within distributed satellite clusters, which support Q/V, Ka, Ku and other multi-frequency, multi-bandwidth, multi-channel multi-service microwave signal reception and transmission, and high-speed, highcapacity, long-distance laser link data interaction. Finally, the development route and key problems to be solved of satellite communication payload technology based on microwave photonics are summarized and prospected, which provides important theoretical reference and key technical support for the design and application of future multi-frequency integrated satellite communication payloads. |
来源
|
电子学报
,2022,50(12):2945-2956 【核心库】
|
DOI
|
10.12263/DZXB.20211196
|
关键词
|
卫星通信载荷
;
微波光子
;
信道化
;
交换转发
|
地址
|
1.
军事科学院系统工程研究院, 北京, 100141
2.
西安空间无线电技术研究所, 陕西, 西安, 710000
3.
西安电子科技大学, 陕西, 西安, 710000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
文献收藏号
|
CSCD:7415472
|
参考文献 共
36
共2页
|
1.
Yao J P. Microwave photonics.
Journal of Lightwave Technology,2009,27(3):314-335
|
CSCD被引
192
次
|
|
|
|
2.
Capmany J. Microwave photonic signal processing.
Journal of Lightwave Technology,2013,31(4):571-586
|
CSCD被引
30
次
|
|
|
|
3.
Capmany J. Microwave photonics combines two worlds.
Nature Photonics,2007,1(6):319-330
|
CSCD被引
166
次
|
|
|
|
4.
谭庆贵.
微波光子技术及应用,2019
|
CSCD被引
1
次
|
|
|
|
5.
吴昊. 面向天地一体化信息网络的星载交换技术发展现状与趋势.
天地一体化信息网络,2021,2(2):2-10
|
CSCD被引
1
次
|
|
|
|
6.
董洪建. 基于微波光子技术的高通量卫星研究进展.
空间电子技术,2021,18(2):1-8
|
CSCD被引
1
次
|
|
|
|
7.
李小军. 面向卫星载荷的大瞬时带宽微波光子信道化接收变频技术研究进展.
空间电子技术,2020,17(3):81-87
|
CSCD被引
1
次
|
|
|
|
8.
Pan S L. Satellite payloads pay off.
IEEE Microwave Magazine,2015,16(8):61-73
|
CSCD被引
13
次
|
|
|
|
9.
Duarte V C. Modular coherent photonic-aided payload receiver for communications satellites.
Nature Communications,2019,10(1):1984
|
CSCD被引
3
次
|
|
|
|
10.
Sotom M. Microwave photonic technologies for flexible satellite telecom payloads.
2009 35th European Conference on Optical Communication,2009:1-4
|
CSCD被引
1
次
|
|
|
|
11.
Piqueras M A. A flight demonstration photonic payload for up to Q/V-band implemented in a satellite Ka-band hosted payload aimed at broadband high throughput satellites.
Proceedings Volume 11180, International Conference on Space Optics-ICSO 2018,2019:1796-1804
|
CSCD被引
1
次
|
|
|
|
12.
Buxton B. Noise and intermodulation distortion reduction in an optical feedforward transmitter.
1994 IEEE MTT-S International Microwave Symposium Digest(Cat. No. 94CH3389-4),1994:1105-1108
|
CSCD被引
1
次
|
|
|
|
13.
Ismail T. High-dynamic-range wireless-over-fiber link using feedforward linearization.
Journal of Lightwave Technology,2007,25(11):3274-3282
|
CSCD被引
2
次
|
|
|
|
14.
Chen S C. Experimental investigation on improved predistortion circuit for directly modulated radio over fiber system.
IEEE Photonics Journal,2017,9(5):1-9
|
CSCD被引
1
次
|
|
|
|
15.
Roselli L. Predistortion circuit design for II andⅢorder simultaneous linearization in multiservice telecommunications apparatuses.
2002 IEEE MTT-S International Microwave Symposium Digest(Cat. No. 02CH37278),2002:1711-1714
|
CSCD被引
1
次
|
|
|
|
16.
Tervo N. Digital predistortion of millimeter-wave phased array transmitter with overtheair calibrated simplified conductive feedback architecture.
2020 IEEE/MTT-S International Microwave Symposium(IMS),2020:543-546
|
CSCD被引
1
次
|
|
|
|
17.
Zhu R. Ultra broadband predistortion circuit for radio-over-fiber transmission systems.
Journal of Lightwave Technology,2016,34(22):5137-5145
|
CSCD被引
5
次
|
|
|
|
18.
Cui Y. Enhanced spurious-free dynamic range in intensity-modulated analog photonic link using digital postprocessing.
IEEE Photonics Journal,2014,6(2):1-8
|
CSCD被引
2
次
|
|
|
|
19.
Lam D. Digital broadband linearization of optical links.
Optics Letters,2013,38(4):446-448
|
CSCD被引
6
次
|
|
|
|
20.
Liu X. Suppression of nonlinear distortions in intensity modulated analog photonic link employing digital signal post-processing.
2016 IEEE International Topical Meeting on Microwave Photonics,2016:129-132
|
CSCD被引
1
次
|
|
|
|
|