废弃混凝土再生原理与再生混凝土基本问题
Principles for waste concrete recycling and basic problems of recycled concrete
查看参考文献67篇
文摘
|
从混凝土的历史沿革入手,本文首先阐述了砂石骨料与胶凝材料经科学设计实现原料到产品的制备合成原理;而后针对服役后废弃混凝土的分离、分解和分级,剖析了混凝土再生的路径与原则,揭示了废弃混凝土加工成再生骨料和再生粉料演变机理;进一步分析了再生原料制备新混凝土面临的基本问题以及多尺度性能改善机制,并对比传统与现代配合比设计方法,提出了基于机器学习的再生混凝土设计与制备模式,提炼了再生混凝土性能设计与应用的三方面准则.最后,围绕全再生骨料混凝土、碱激发再生骨料混凝土和3D打印再生混凝土等技术,对再生混凝土的创新与未来发展提出了建议.本文旨在充分发挥废弃混凝土的资源化再利用价值与低碳潜力,构建混凝土循环再生新范式,助力建筑业绿色低碳转型. |
其他语种文摘
|
The discovery and development of contemporary concrete have made substantial contributions to the industrial revolution and urbanization over the last two centuries. The tremendous use of concrete results in a large amount of solid waste and considerable carbon emissions. The effort on waste concrete recycling is significant and vital in light of the national strategy of "carbon peaking and neutrality". The previous research on the recycled concrete focused on the traditional ideas of aggregate substitution and parameter modification to normal concrete. However, new ideas for waste concrete recycling and low-carbon application of recycled concrete should be further investigated. The theory and methods of concrete composition, decomposition, and recycling are examined. In general, the synthesis of concrete necessitates managing the characteristics of raw ingredients to increase overall performance. A mature concrete synthesis system was established by the steady physical qualities of sand and gravels, the hydration reaction of cementitious materials, and scientific combination design. Furthermore, the changes in the physical qualities of concrete components provide a theoretical foundation for crushing and sieving to produce recycled materials. To make recycled concrete (RC), recycled aggregates (RAs) and recycled powder are employed. However, the use of RC is complicated by the uncertainty of raw material sources, variations in the hydration process and microstructures, and discrepancies in basic attributes. Multi-way modification strategies have been developed to improve the qualities of RAs and RC to realize the conversion of difficult-to-control wastes into controllable recycled materials. The qualities of RC are improved and the variability of these features is reduced by incorporating artificial intelligence technologies into the mixture design of RC based on big data. In addition, three criteria for the preparation of RC are proposed, including a safe application criterion, an economically durable criterion, and a low-carbon sustainable criterion, to encourage the promotion of RC and improve its economic and environmental benefits. For the further development of waste concrete recycling, full recycled aggregate concrete (FRAC), which uses 100% recycled coarse and fine aggregates, is proposed as a new generation of RC to increase the economic and low-carbon benefits of RC. Meanwhile, alkali-activated cementitious materials are being used to prepare recycled aggregate concrete for even further carbon reduction, and 3D printing RC technology is being used to reduce carbon emission and fresh concrete waste during construction. We also suggest a specific concrete design concept for recycling, in which decomposition agents (such as nano-TiO_2) could be employed to easily peel off the attached old mortar from RAs during microwave treatment. The photoelectric effect of nano-TiO_2 could also be used to make concrete with oxygen-releasing properties. The low-carbon properties of concrete would be a consensus to accomplish its green and high performance with the development of the construction materials sector. Waste concrete recycling is beneficial to enhance waste concrete's resource reuse value and low-carbon potential, as well as create a concrete circular economy development model. |
来源
|
科学通报
,2023,68(5):510-523 【核心库】
|
DOI
|
10.1360/TB-2022-0521
|
关键词
|
废弃混凝土再生
;
再生混凝土
;
再生骨料
;
再生粉料
;
全再生骨料混凝土
;
面向再生的混凝土设计
|
地址
|
1.
同济大学土木工程学院建筑工程系, 上海, 200092
2.
同济大学, 土木工程防灾国家重点实验室, 上海, 200092
3.
同济大学, 先进土木工程材料教育部重点实验室, 上海, 201804
4.
同济大学, 工程结构性能演化与控制教育部重点实验室, 上海, 200092
5.
中国中材国际工程股份有限公司, 北京, 100102
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0023-074X |
学科
|
建筑科学 |
基金
|
国家自然科学基金国家杰出青年科学基金
|
文献收藏号
|
CSCD:7407876
|
参考文献 共
67
共4页
|
1.
Newell P. An ancient battle between environment and concrete.
Nat Rev Chem,2021,5:513-514
|
CSCD被引
2
次
|
|
|
|
2.
赵国藩. 混凝土及其增强材料的发展与应用.
建筑材料学报,2000(1):8-13
|
CSCD被引
3
次
|
|
|
|
3.
Jahren P.
History of Concrete: A very Old and Modern Material,2018
|
CSCD被引
1
次
|
|
|
|
4.
陈肇元. 高强与高性能混凝土的发展及应用.
土木工程学报,1997(5):3-11
|
CSCD被引
35
次
|
|
|
|
5.
唐明述. 关于碱-集料反应的几个理论问题.
硅酸盐学报,1990(4):365-373
|
CSCD被引
13
次
|
|
|
|
6.
孙伟. 荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命.
东南大学学报(自然科学版),2006(S2):7-14
|
CSCD被引
20
次
|
|
|
|
7.
吴中伟. 绿色高性能混凝土与科技创新.
建筑材料学报,1998(1):3-9
|
CSCD被引
7
次
|
|
|
|
8.
Editorial. Concrete needs to lose its colossal carbon footprint.
Nature,2021,597:593-594
|
CSCD被引
1
次
|
|
|
|
9.
Fennell P. Cement and steel-Nine steps to net zero.
Nature,2022,603:574-577
|
CSCD被引
5
次
|
|
|
|
10.
Bendixen M. Time is running out for sand.
Nature,2019,571:29-31
|
CSCD被引
23
次
|
|
|
|
11.
Arora M. Urban mining in buildings for a circular economy: Planning, process and feasibility prospects.
Resour Conserv Recycl,2021,174:105754
|
CSCD被引
1
次
|
|
|
|
12.
Xiao J. An overview of study on recycled aggregate concrete in China (1996-2011).
Constr Build Mater,2012,31:364-383
|
CSCD被引
70
次
|
|
|
|
13.
Behera M. Recycled aggregate from C&D waste & and its use in concrete-A breakthrough towards sustainability in construction sector: A review.
Constr Build Mater,2014,68:501-516
|
CSCD被引
24
次
|
|
|
|
14.
Glausiusz J. Hundreds of Israel's archaeological sites are vanishing under concrete.
Nature,2020,582:474-477
|
CSCD被引
1
次
|
|
|
|
15.
Cox G L. Effect of oxygen concentration on corrosion rates of steel and composition of corrosion products formed in oxygenated water.
Ind Eng Chem,1931,23:1012-1016
|
CSCD被引
2
次
|
|
|
|
16.
Toufar W. Berechnung der packungsdichte von korngemischen.
Aubereitungs-Technik,1977,18:603-608
|
CSCD被引
1
次
|
|
|
|
17.
Fayed M E.
Handbook of Powder Science and Technology,1997
|
CSCD被引
5
次
|
|
|
|
18.
Fox M D. Analysis of transient plant movements by holographic interferometry.
Nature,1976,261:488-490
|
CSCD被引
1
次
|
|
|
|
19.
Double D D. Cement-A respectable material?.
Nature,1981,289:348-349
|
CSCD被引
1
次
|
|
|
|
20.
Mora C F. Particle size distribution analysis of coarse aggregate using digital image processing.
Cem Concr Res,1998,28:921-932
|
CSCD被引
43
次
|
|
|
|
|