水平对抛式原子干涉陀螺物理系统研制
Research and development of the physical system for horizontal counter-propagating atom interferometric gyroscope
查看参考文献36篇
文摘
|
水平对抛式原子干涉陀螺以物质波和Sagnac效应为基础,能够对其载体在运动过程中水平方向上产生的角速度及角加速度进行高精度测量。陀螺的物理系统为原子的冷却、囚禁、干涉提供超高真空环境和特定磁场环境,并为激光操控和探测原子态提供光学通路,是陀螺的核心部分。为了实现原子干涉测量并满足高精度测量的需求,在分析原子干涉陀螺运行原理的基础上明确了陀螺物理系统的功能及基本结构,理论分析了物理系统的真空度、磁场等关键指标,然后根据分析和设计结果研制了一套水平对抛式原子干涉陀螺物理系统,测量结果显示真空度可稳定维持在10-8 Pa量级,利用这套系统获得的冷原子团直径约6 mm、原子数量约8×10~9个、原子温度为12.8 μK,满足后续原子干涉测量需求。 |
其他语种文摘
|
Based on matter wave and Sagnac effect,the angular velocity and acceleration in horizontal direction of the carrier can be measured by the horizontal atom interferometric gyroscope.The physical system is the key subsystem of a gyroscope,which provides the circumstances of ultrahigh vacuum with special magnetic distributions and optical paths for control and detection of atom states by lasers.To realize of atom interferometry and satisfy the requirements of high-precision measurement,the principles of atom interferometric gyroscope operation are analyzed,and the functional requirements and basic mechanical components are clarified.Based on the theoretical analysis,the key specifications including vacuum degrees and magnetic distributions of each functional area are proposed.Therefore,a physical system of atom interferometric gyroscope is constructed,the measurement results reveal that the vacuum held steady at 10-8 Pa,and the diameter of cold atom cloud generating from this system is 6 mm,with the quantity of 8×10~9 and temperature of 12.8 μK,which satisfies the requirement of the subsequent experiments. |
来源
|
仪器仪表学报
,2022,43(12):87-95 【核心库】
|
DOI
|
10.19650/j.cnki.cjsi.J2210108
|
关键词
|
原子干涉测量
;
陀螺仪
;
角速度
;
Sagnac效应
|
地址
|
中国科学院西安光学精密机械研究所光电技术部, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-3087 |
学科
|
机械、仪表工业 |
基金
|
中国科学院"西部之光"人才培养计划"西部青年学者"项目
;
陕西省重点研发计划
|
文献收藏号
|
CSCD:7406784
|
参考文献 共
36
共2页
|
1.
Muller H. A precision measurement of the gravitational redshift by the interference of matter waves.
Nature,2010,463(7283):926-929
|
CSCD被引
20
次
|
|
|
|
2.
Fixler J B. Atom interferometer measurement of the Newtonian constant of gravity.
Science,2007,315(5808):74-77
|
CSCD被引
50
次
|
|
|
|
3.
Cadoret M. Combination of bloch oscillations with a Ramsey-Borde interferometer: New determination of the fine structure constant.
Physical Review Letters,2008,101(23):230801
|
CSCD被引
7
次
|
|
|
|
4.
Canuel B. Sixaxis inertial sensor using cold-atom interferometry.
Physical Review Letters,2006,97(1):010402
|
CSCD被引
46
次
|
|
|
|
5.
Wu S J. Demonstration of an areaenclosing guided-atom interferometer for rotation sensing.
Physical Review Letters,2007,99(17):173201
|
CSCD被引
5
次
|
|
|
|
6.
Riehle F. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer.
Physical Review Letters,1991,67(2):177-180
|
CSCD被引
25
次
|
|
|
|
7.
Takase K.
Precision rotation rate measurement with a mobile atom interferometer,2008
|
CSCD被引
1
次
|
|
|
|
8.
Stockton J K. Absolute geodetic rotation measurement using atom interferometry.
Physical Review Letters,2011,107:133001
|
CSCD被引
18
次
|
|
|
|
9.
Savoie D. Interleaved atom interferometry for high-sensitivity inertial measurements.
Science Advances,2018,4(12):eaau7948
|
CSCD被引
13
次
|
|
|
|
10.
Muller T. A compact dual atom interferometer gyroscope based on laser-cooled Rubidium.
The European Physical Journal D,2009,53(3):273-281
|
CSCD被引
16
次
|
|
|
|
11.
Berg P. Compositelight-pulse technique for high-precision atom interferometry.
Physical Review Letters,2015,114(6):063002
|
CSCD被引
11
次
|
|
|
|
12.
Salvi L. Squeezing on momentum states for atom interferometry.
Physical Review Letters,2018,120(3):033601
|
CSCD被引
2
次
|
|
|
|
13.
Hinton A. A portable magneto-optical trap with prospects for atom interferometry in civil engineering.
Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences,2017,375(2099):20160238
|
CSCD被引
3
次
|
|
|
|
14.
Yu D H. Atomic clocks, gravimeters and interferometer research at KRISS.
AAPPS Bulletin,2017,27(1):10-16
|
CSCD被引
1
次
|
|
|
|
15.
Yao Z W. Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope.
Physical Review A,2018,97(1):013620
|
CSCD被引
11
次
|
|
|
|
16.
Yao Z W. Self-alignment of a large-area dual-atom-interferometer gyroscope using parameter-decoupled phase-seeking calibrations.
Physical Review A,2021,103:023319
|
CSCD被引
4
次
|
|
|
|
17.
张淋. 冷原子干涉陀螺仪实现及其性能分析.
仪器仪表学报,2018,39(7):11-18
|
CSCD被引
4
次
|
|
|
|
18.
黄晨. 三脉冲冷原子陀螺仪中基于内态演化的拉曼光光强补偿算法.
导航定位与授时,2021,8(2):45-49
|
CSCD被引
1
次
|
|
|
|
19.
Tackmann G. Selfalignment of a compact large-area atomic Sagnac interferometer.
New Journal of Physics,2012,14(1):015002
|
CSCD被引
13
次
|
|
|
|
20.
Tackmann G. Large-area Sagnac atom interferometer with robust phase read out.
Comptes Rendus Physique,2004,15:884-897
|
CSCD被引
1
次
|
|
|
|
|