帮助 关于我们

返回检索结果

基于模拟实验探讨断裂-流体-岩石体系中的矿物溶解-沉淀过程
Exploring the mineral dissolution-precipitation processes in fracture-fluid-rock systems based on simulation experiments

查看参考文献90篇

丁茜 1,2,3   王静彬 1,2,3   杨磊磊 4,5   朱东亚 1,2,3   江文滨 6,7   何治亮 1,3,8 *  
文摘 断裂体系中的流体-岩石相互作用及其成储意义一直都是业界关注的热点问题。流体沿断裂流动运移,溶解围岩矿物,沉淀新矿物,改变储集空间的形态,对碳酸盐岩储层形成与分布、油气运移及分布起十分重要的控制作用。查明深层-超深层含断裂碳酸盐岩储层的成因机理,具有重要的理论和实际意义。为此设计了基于塔里木盆地顺北地区奥陶系一间房组的高温高压溶蚀-沉淀模拟实验,并结合TOUGHREACT等数值模拟软件,以查明沿断裂流动的含CO_2盐水和碳酸盐岩相互作用的过程,考察温度、压力、流体性质、物理非均质性等因素的影响程度,计算裂缝内的钙离子扩散特征以及矿物溶解-沉淀的趋势。实验和计算结果显示:实验时间内整体反应以碳酸钙溶解为主,反应后样品储集性能得到改善,样品内裂缝宽度、数量和体积增加,样品渗透率和孔隙度增加。研究明确了样品物理非均质性和流体水力性质促进主裂缝成为主要流动通道。主裂缝内流动过程和反应过程相互促进,并且共同决定了主裂缝不仅是流体流动的优势通道和水-岩反应发生的主要场所,也会是具有潜力的优势储集空间。
其他语种文摘 Water-rock interactions in fracture systems and their significance to reservoir formation have always been a hot topic of interest for scholars around the world. Fluid may flow and transport along the fractures, dissolve surrounding rocks, precipitate new minerals, and change the morphology of storage space, all playing critical roles in the formation and distribution of carbonate reservoirs as well as hydrocarbon migration and accumulation. It is therefore of great theoretical and practical significance to identify the genetic mechanism of deep and ultra-deep fractured carbonate reservoirs. In this study, we carried out high-temperature and high-pressure dissolution simulation experiments on samples from the Ordovician Yijianfang Formation in the Shunbei area of Tarim Basin and performed numerical simulation with tools such as TOUGHREACT to identify the interaction mechanism between brine with dissolved CO_2 and carbonate rocks, to investigate the influence of temperature, pressure, fluid property and physical heterogeneity, and to calculate the Ca~(2+) diffusion properties and mineral dissolution/precipitation trends. The results show that the overall reaction is dominated by calcite dissolution with an increase in fracture width, number and volume, as well as sample permeability and porosity, indicating improvement of reservoir quality. This study clarifies that the physical heterogeneity and fluid hydraulic properties promote the main fractures as the main flow channels. The flow and reaction processes promote each other and together determine that the main fractures will not only be the dominant channels for fluid flow and the main place where water-rock reactions occur, but will also be the dominant reservoir space for oil and gas.
来源 石油与天然气地质 ,2023,44(1):164-177 【核心库】
DOI 10.11743/ogg20230113
关键词 流动通道 ; 溶解-沉淀 ; 物理非均质性 ; 含裂缝灰岩 ; 碳酸盐岩储层 ; 塔里木盆地
地址

1. 页岩油气富集机理与有效开发国家重点实验室, 页岩油气富集机理与有效开发国家重点实验室, 北京, 102206  

2. 中国石化石油勘探开发研究院, 北京, 102206  

3. 中国石化深部地质与资源重点实验室, 中国石化深部地质与资源重点实验室, 北京, 102206  

4. 中国石油大学(北京), 北京, 102249  

5. 油气资源与探测国家重点实验室, 油气资源与探测国家重点实验室, 北京, 102249  

6. 中国科学院力学研究所流固耦合系统力学实验室, 北京, 100190  

7. 中国科学院大学工程科学学院, 北京, 100190  

8. 中国石油化工股份有限公司, 北京, 100728

语种 中文
文献类型 研究性论文
ISSN 0253-9985
学科 石油、天然气工业
基金 国家自然科学基金项目 ;  中国科学院A类战略性先导科技专项
文献收藏号 CSCD:7401605

参考文献 共 90 共5页

1.  何治亮. 深层-超深层优质碳酸盐岩储层形成控制因素. 石油与天然气地质,2017,38(4):633-644,763 CSCD被引 53    
2.  马永生. 中国海相深层油气富集机理与勘探开发:研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质,2020,41(4):655-672,683 CSCD被引 77    
3.  马永生. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发,2022,49(1):1-17 CSCD被引 90    
4.  漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探,2020,25(1):102-111 CSCD被引 111    
5.  鲁新便. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质,2015,36(3):347-355 CSCD被引 163    
6.  韩长城. 塔河油田奥陶系碳酸盐岩岩溶斜坡断控岩溶储层特征及形成机制. 石油与天然气地质,2016,37(5):644-652 CSCD被引 34    
7.  黄诚. 塔里木盆地顺北地区中-下奥陶统"断控"缝洞系统划分与形成机制. 石油与天然气地质,2022,43(1):54-68 CSCD被引 30    
8.  Davies G R. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin,2006,90(11):1641-1690 CSCD被引 342    
9.  Al-Khulaifi Y. Reservoircondition pore-scale imaging of dolomite reaction with supercritical CO_2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis. International Journal of Greenhouse Gas Control,2018,68:99-111 CSCD被引 3    
10.  Noiriel C. Hydraulic properties and microgeometry evolution accompanying limestone dissolution by acidic water. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles,2005,60(1):177-192 CSCD被引 1    
11.  Noiriel C. Changes in reactive surface area during limestone dissolution: An experimental and modelling study. Chemical Geology,2009,265(1/2):160-170 CSCD被引 3    
12.  Smith M M. CO_2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments. Advances in Water Resources,2013,62(Part C):370-387 CSCD被引 4    
13.  Smith M M. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO_2-acidified brines. Energy Procedia,2014,63:3126-3137 CSCD被引 1    
14.  Smith M M. Illite dissolution kinetics from 100 to 280℃and pH 3 to 9. Geochimica et Cosmochimica Acta,2017,209:9-23 CSCD被引 1    
15.  Deng Hang. Alterations of fractures in carbonate rocks by CO_2-acidified brines. Environmental Science & Technology,2015,49(16):10226-10234 CSCD被引 8    
16.  Deng Hang. Alteration and erosion of rock matrix bordering a carbonate-rich shale fracture. Environmental Science & Technology,2017,51(15):8861-8868 CSCD被引 2    
17.  Gouze P. X-ray tomography characterization of fracture surfaces during dissolution. Geophysical Research Letters,2003,30(5):1267 CSCD被引 2    
18.  Noiriel C. Resolving time-dependent evolution of pore-scale structure, permeability and reactivity using X-ray microtomography. Reviews in Mineralogy and Geochemistry,2015,80(1):247-285 CSCD被引 2    
19.  Noiriel C. Evolution of planar fractures in limestone: The role of flow rate, mineral heterogeneity and local transport processes. Chemical Geology,2018,497:100-114 CSCD被引 1    
20.  Noiriel C. Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophysical Research Letters,2004,31(24):L24603 CSCD被引 3    
引证文献 2

1 张烈辉 二氧化碳-水-岩作用机理及微观模拟方法研究进展 石油勘探与开发,2024,51(1):199-211
CSCD被引 2

2 远光辉 珠江口盆地白云凹陷古近系深层高变温背景下储层成岩作用与低渗致密化机制 石油与天然气地质,2024,45(1):44-64
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号