难熔高熵合金成分设计微观组织及性能研究进展
Research progress in composition design, microstructure and properties of refractory high entropy alloys
查看参考文献75篇
文摘
|
高熵合金被定义为含有4种或4种以上主要元素的合金,主要元素的原子分数大于5%且不超过35%,具有高强度、高耐磨性、高耐腐蚀性等优异的性能。难熔高熵合金是基于难熔元素的高熵合金而设计开发的一种新型高温合金,其在航空航天、石油化工等领域具有广阔的应用前景,有望取代传统的高温合金。本文综述了难熔高熵合金一般是从元素选择和添加微量的元素等方面进行成分设计,其相组成有单相组织和双相组织等结构,研究了难熔高熵合金的制备方法和性能特点,并且在文章最后指出了难熔高熵合金目前所面临的问题与挑战。希望通过本文综述,可以为科研工作者在难熔高熵合金的组分设计,微观组织调控以及性能开发等方面提供有价值的参考。 |
其他语种文摘
|
High entropy alloy is defined as an alloy containing four or more main elements. The atomic fraction of the main elements is greater than 5% and not more than 35%, which has excellent properties such as high strength, high wear resistance and high corrosion resistance. Refractory high-entropy alloy is a new type of superalloy designed and developed based on high-entropy alloy of refractory elements, which has broad application prospects in aerospace, petrochemical and other fields, and is expected to replace traditional superalloys. This paper reviews the composition design of refractory high-entropy alloys from the aspects of element selection and addition of trace elements, and its phase composition has single-phase structure and duplex structure, and the preparation method and performance characteristics of refractory high-entropy alloys are studied, and finally gives the problems and challenges faced by refractory high entropy alloys. This review provides a valuable reference for researchers in the component design, microstructure regulation and performance development of refractory high entropy alloys. |
来源
|
航空材料学报
,2022,42(6):33-47 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000205
|
关键词
|
难熔高熵合金
;
成分设计
;
微观组织
;
力学性能
|
地址
|
陕西理工大学材料科学与工程学院, 陕西, 汉中, 723001
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
陕西省自然科学基础研究计划青年项目
;
陕西省教育厅专项科研计划项目
|
文献收藏号
|
CSCD:7399357
|
参考文献 共
75
共4页
|
1.
Liu X L. Monte carlo simulation of order-disorder transition in refractory high entropy alloys: a data-driven approach.
Computational Materials Science,2021,187:110135
|
CSCD被引
5
次
|
|
|
|
2.
郭娜娜. 难熔高熵合金的研究进展.
热加工工艺,2021,50(8):1-4
|
CSCD被引
2
次
|
|
|
|
3.
Qiao D X. A Novel Series of Refractory High-Entropy Alloys Ti_2ZrHf_(0.5)VNb_x with High Specific Yield Strength and Good Ductility.
Acta Metallurgica Sinica(English Letters),2019,32(8):925-931
|
CSCD被引
21
次
|
|
|
|
4.
Senkov O N. Mechanical properties of Nb_(25)Mo_(25)Ta_(25)W_(25) and V_(20)Nb_(20)Mo_(20) Ta_(20)W_(20) refractory high entropy alloys.
Intermetallics,2011,19(5):698-706
|
CSCD被引
294
次
|
|
|
|
5.
Juan C C. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys.
Intermetallics,2015,62:76-83
|
CSCD被引
75
次
|
|
|
|
6.
Senkov O N. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy.
Journal of Alloys & Compounds,2011,509(20):6043-6048
|
CSCD被引
146
次
|
|
|
|
7.
Senkov O N. Refractory high-entropy alloys.
Intermetallics,2010,18(9):1758-1765
|
CSCD被引
245
次
|
|
|
|
8.
张勇.
先进高熵合金技术,2019
|
CSCD被引
16
次
|
|
|
|
9.
魏耀光. 难熔高熵合金在航空发动机上的应用.
航空材料学报,2019,39(5):82-93
|
CSCD被引
13
次
|
|
|
|
10.
孙博. 难熔高熵合金性能调控与增材制造.
材料工程,2020,48(10):1-16
|
CSCD被引
8
次
|
|
|
|
11.
李肖逸. 共晶高熵合金研究进展.
特种铸造及有色合金,2021,41(1):32-37
|
CSCD被引
1
次
|
|
|
|
12.
Liu X W. A novel lightweight refractory high-entropy alloy with high specific strength and intrinsic deformability.
Materials Letters,2020,287:129255
|
CSCD被引
9
次
|
|
|
|
13.
Yurchenko N Y. Microstructure evolution of a novel low-density Ti-Cr-Nb-V refractory high entropy alloy during cold rolling and subsequent annealing.
Materials Characterization,2019,158:109980
|
CSCD被引
10
次
|
|
|
|
14.
Chen Y W. A single-phase V_(0.5)Nb_(0.5)ZrTi refractory high-entropy alloy with outstanding tensile properties.
Materials Science and Engineering: A,2020,792:139774
|
CSCD被引
21
次
|
|
|
|
15.
Yang C. Microstructure evolution and mechanical property of a precipitationstrengthened refractory high-entropy alloy HfNbTaTiZr.
Materials Letters,2019,254:46-49
|
CSCD被引
13
次
|
|
|
|
16.
Zhu C L. Microstructure and mechanical properties of the TiZrNbMoTa refractory high-entropy alloy produced by mechanical alloying and spark plasma sintering.
International Journal of Refractory Metals and Hard Materials,2020,93:105357
|
CSCD被引
10
次
|
|
|
|
17.
Zhang H. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing.
Materials & Design,2021,201:109462
|
CSCD被引
24
次
|
|
|
|
18.
Das S. A novel refractory WMoVCrTa highentropy alloy possessing fine combination of compressive stress-strain and high hardness properties.
Advanced Powder Technology,2020,31:4619
|
CSCD被引
2
次
|
|
|
|
19.
Takeuchi A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element.
Materials Transactions,2005,46:2817-2829
|
CSCD被引
562
次
|
|
|
|
20.
Liu Q. Hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high-entropy alloy fabricated by powder metallurgy.
Materials Science and Engineering: A,2021,809:140922
|
CSCD被引
4
次
|
|
|
|
|