激光选区熔化纳米SiC/AlSi_7Mg复合材料微观组织及力学性能
Microstructure and mechanical properties of nano-SiC/AlSi_7Mg composites fabricated by selective laser melting
查看参考文献29篇
文摘
|
采用机械混合法制备纳米SiC/AlSi_7Mg混合粉末,利用激光选区熔化技术(selective laser melting,SLM)成形纳米SiC颗粒增强AlSi_7Mg复合材料,观察和分析试样的相对密度、物相和微观组织,并测试材料的硬度和拉伸性能。结果表明:SLM成形纳米SiC/AlSi_7Mg复合材料试样的相对密度随着扫描速度和扫描间距的增大均呈现先增加后减少的趋势,相对密度最高可达99.75%;试样微观组织与SLM成形铝合金相似,Si相呈网状结构均匀嵌入α-Al基体中,且在Al基体中存在与Si分布相似的纳米SiC团聚物及Mg_2Si相;与AlSi_7Mg相比,复合材料微观组织由柱状晶转化为等轴晶,且晶粒明显细化(平均晶粒尺寸为1.36μm);由于SiC的加入,产生细晶强化和固溶强化,试样的硬度和强度均明显提高,硬度最高达到137.3HV,抗拉强度达到448.3MPa,屈服强度达到334.7MPa,但伸长率下降至3.9%,断裂模式主要为脆性断裂。 |
其他语种文摘
|
The nano-SiC/AlSi_7Mg mixed powder was prepared by mechanical mixing method.The specimens of nano-SiC particle reinforced AlSi_7Mg composite were fabricated by selective laser melting (SLM).The relative density,phase and microstructure were observed and analyzed,and the microhardness and tensile properties were tested.The results show that the relative densities of SLM nano-SiC/AlSi_7Mg composite are increased firstly and then decreased with the increase of scanning speed and scanning space,and the maximum relative density reaches 99.75%.The microstructure of specimens is similar to that of SLMformed Al-Si alloys,and the network-structured Si phase is uniformly embedded in theα-Al matrix.There are nano-SiC agglomerates and Mg_2Si phase in theα-Al matrix,which has a similar distribution to Si. Compared with AlSi_7Mg,the microstructure of specimens is changed from columnar to equiaxed grain,and the grains are significantly refined(the average grain size is 1.36μm).Due to the addition of SiC,grain refinement strengthening and solid solution strengthening are produced,and the hardness and strength of composite are significantly improved.The hardness,tensile strength and yield strength reach 137.3HV,448.3 MPa and 334.7 MPa,respectively.However,the elongation is reduced to 3.9%,and the fracture mode is mainly brittle fracture. |
来源
|
材料工程
,2022,50(12):143-151 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001016
|
关键词
|
激光技术
;
激光选区熔化
;
铝基纳米复合材料
;
微观组织
;
力学性能
|
地址
|
1.
中国民航大学安全科学与工程学院, 天津, 300300
2.
中国民航大学中欧航空工程师学院, 天津, 300300
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
中国民航大学中央高校基本科研业务费专项
|
文献收藏号
|
CSCD:7398787
|
参考文献 共
29
共2页
|
1.
杨强. 激光增材制造技术的研究现状及发展趋势.
航空制造技术,2016(12):26-31
|
CSCD被引
71
次
|
|
|
|
2.
李帅. 铝合金激光增材制造技术研究现状与展望.
轻工机械,2017,35(3):98-101
|
CSCD被引
8
次
|
|
|
|
3.
郜庆伟. 铝合金增材制造技术研究进展.
材料工程,2019,47(11):32-42
|
CSCD被引
20
次
|
|
|
|
4.
国家自然科学基金委工程与材料科学部.
机械工程学科发展战略报告(2011-2020),2010
|
CSCD被引
3
次
|
|
|
|
5.
顾冬冬. 金属构件选区激光熔化增材制造控形与控性的跨尺度物理学机制.
南京航空航天大学学报,2017,49(5):645-652
|
CSCD被引
20
次
|
|
|
|
6.
杨平华. 金属增材制造技术发展动向及无损检测研究进展.
材料工程,2017,45(9):13-21
|
CSCD被引
31
次
|
|
|
|
7.
杨永强. 金属零件选区激光熔化直接成型技术研究进展.
中国激光,2011,38(6):0601007
|
CSCD被引
36
次
|
|
|
|
8.
马涛. 激光选区熔化成形Ti-6Al-4V疲劳性能研究.
中国激光,2018,45(11):1102012
|
CSCD被引
11
次
|
|
|
|
9.
袁学兵. 选择性激光熔化AlSi10Mg合金粉末研究.
热加工工艺,2014,43(4):91-94
|
CSCD被引
17
次
|
|
|
|
10.
马青娜. 铝合金焊接接头疲劳研究进展综述.
建筑结构,2018,48:1022-1026
|
CSCD被引
4
次
|
|
|
|
11.
叶想平. 颗粒增强金属基复合材料的强化机理研究现状.
材料工程,2018,46(12):28-37
|
CSCD被引
23
次
|
|
|
|
12.
Yu W H. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review.
Progress in Materials Science,2019,104:330-379
|
CSCD被引
41
次
|
|
|
|
13.
Gu D D. Selective laser melting additive manufacturing of TiC/AlSi_(10)Mg bulk-form nanocomposites with tailored microstructures and properties.
Physics Procedia,2014,56:108-116
|
CSCD被引
8
次
|
|
|
|
14.
Gu D D. Rapid fabrication of Albased bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting.
Scrip Mater,2015,96:25-28
|
CSCD被引
28
次
|
|
|
|
15.
Xia Y K. Effect of nano-TiB_2particles on the anisotropy in an AlSi_(10)Mg alloy processed by selective laser melting.
Journal of Alloys and Compounds,2019,798:644-655
|
CSCD被引
18
次
|
|
|
|
16.
Gao C. Simultaneous enhancement of strength,ductility,and hardness of TiN AlSi_(10)Mg nanocomposites via selective laser melting.
Additive Manufacturing,2020,34:101378
|
CSCD被引
24
次
|
|
|
|
17.
叶寒. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能.
材料工程,2020,48(3):75-83
|
CSCD被引
4
次
|
|
|
|
18.
袁广辰.
工艺对选择性激光熔化AlSi10Mg合金组织与性能的影响,2019
|
CSCD被引
3
次
|
|
|
|
19.
Almangour B. Thermal behavior of the molten pool,microstructural evolution,and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites:experimental and simulation methods.
Journal of Materials Processing Technology,2018,257:288-301
|
CSCD被引
16
次
|
|
|
|
20.
Wang Z Y. Microstructure evolution and properties of nanoparticulate SiC modified AlSi_(10)Mg alloys.
Materials Science and Engineering:A,2021,808:140864
|
CSCD被引
5
次
|
|
|
|
|