帮助 关于我们

返回检索结果

Detection of Stealthy False Data Injection Attacks Against Cyber-Physical Systems: A Stochastic Coding Scheme

查看参考文献29篇

Guo Haibin 1,2   Pang Zhonghua 3   Sun Jian 1,2   Li Jun 4 *  
文摘 This paper, from the view of a defender, addresses the security problem of cyber-physical systems(CPSs)subject to stealthy false data injection(FDI)attacks that cannot be detected by a residual-based anomaly detector without other defensive measures. To detect such a class of FDI attacks, a stochastic coding scheme, which codes the sensor measurement with a Gaussian stochastic signal at the sensor side, is proposed to assist an anomaly detector to expose the FDI attack. In order to ensure the system performance in the normal operational context, a decoder is adopted to decode the coded sensor measurement when received at the controller side. With this detection scheme, the residual under the attack can be significantly different from that in the normal situation, and thus trigger an alarm. The design condition of the coding signal covariance is derived to meet the constraints of false alarm rate and attack detection rate. To minimize the trace of the coding signal covariance, the design problem of the coding signal is converted into a constraint non-convex optimization problem, and an estimation-optimization iteration algorithm is presented to obtain a numerical solution of the coding signal covariance. A numerical example is given to verify the effectiveness of the proposed scheme.
来源 Journal of Systems Science and Complexity ,2022,35(5):1668-1684 【核心库】
DOI 10.1007/s11424-022-1005-z
关键词 Attack detection ; cyber-physical systems(CPSs) ; stealthy FDI attacks ; stochastic coding
地址

1. School of Automation, Beijing Institute of Technology, State Key Lab of Intelligent Control and Decision of Complex Systems, Beijing, 100081  

2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120  

3. North China University of Technology, Key Laboratory of Fieldbus Technology and Automation of Beijing, Beijing, 100144  

4. China Industrial Control Systems Cyber Emergency Response Team, Beijing, 100040

语种 英文
文献类型 研究性论文
ISSN 1009-6124
学科 电子技术、通信技术
基金 国家自然科学基金 ;  the National Key R&D Program of China ;  北京市自然科学基金
文献收藏号 CSCD:7394050

参考文献 共 29 共2页

1.  Mahmoud M S. Modeling and control of cyber-physical systems subject to cyber attacks: A survey of recent advances and challenges. Neurocomputing,2019,338:101-115 CSCD被引 24    
2.  Pang Z H. A Novel Networked Predictive Control Method for Systems with Random Communication Constraints. Journal of Systems Science & Complexity,2021,34(4):1364-1378 CSCD被引 3    
3.  Pang Z H. Cloud-based time-varying formation predictive control of multi-agent systems with random communication constraints and quantized signals. IEEE Trans. Circuits Syst. II, Exp. Briefs,2022,69(3):1282-1286 CSCD被引 4    
4.  Fidler D P. Was stuxnet an act of war? Decoding a cyberattack. IEEE Secur. Priv,2011,9(4):56-59 CSCD被引 4    
5.  Zhang H. Optimal denial-of-service attack scheduling with energy constraint. IEEE Trans. Autom. Control,2015,60(11):3023-3028 CSCD被引 33    
6.  Qin J H. Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks. IEEE Trans. Autom. Control,2018,63(6):1648-1663 CSCD被引 15    
7.  Bai C Z. Data-injection attacks in stochastic control systems: Detectability and performance tradeoffs. Automatica,2017,82:251-260 CSCD被引 12    
8.  Kung E. The performance and limitations of ε-stealthy attacks on higher order systems. IEEE Trans. Autom. Control,2017,62(2):941-947 CSCD被引 6    
9.  Chen Y. Cyber-physical attacks with control objectives. IEEE Trans. Autom. Control,2017,63(5):1418-1425 CSCD被引 1    
10.  Zhang Q R. Optimal stealthy deception attack against cyber-physical systems. IEEE Trans. Cybern,2020,50(9):3963-3972 CSCD被引 12    
11.  Pang Z H. False data injection attacks against partial sensor measurements of networked control systems. IEEE Trans. Circuits Syst. II, Exp. Briefs,2022,69(1):149-153 CSCD被引 5    
12.  Qin J H. Optimal denial-of-service attack energy management against state estimation over an SINR-based network. Automatica,2020,119:109090 CSCD被引 3    
13.  Hou F Y. Deep reinforcement learning for optimal denial-of-service attacks scheduling. Sci. China Inf. Sci,2022,65:162201 CSCD被引 3    
14.  Wu G Y. Optimal Switching Integrity Attacks on Sensors in Industrial Control Systems. Journal of Systems Science & Complexity,2019,32(5):1290-1305 CSCD被引 2    
15.  Wu G Y. Optimal partial feedback attacks in cyber-physical power systems. IEEE Trans. Autom. Control,2020,65(9):3919-3926 CSCD被引 6    
16.  Li F F. False data injection attack for cyber-physical systems with resource constraint. IEEE Trans. Cybern,2020,50(2):729-738 CSCD被引 7    
17.  Guo Z Y. Optimal linear cyber-attack on remote state estimation. IEEE Trans. Control Netw. Syst,2017,4(1):4-13 CSCD被引 24    
18.  Guo Z Y. Worst-case stealthy innovation-based linear attack on remote state estimation. Automatica,2018,89:117-124 CSCD被引 17    
19.  Li Y G. Optimal stealthy false data injection attacks in cyber-physical systems. Inf. Sci,2019,481:474-490 CSCD被引 6    
20.  Pang Z H. Two-channel false data injection attacks against output tracking control of networked systems. IEEE Trans. Ind. Electron,2016,63(5):3242-3251 CSCD被引 18    
引证文献 3

1 Guo Haibin Residual-Based False Data Injection Attacks Against Multi-Sensor Estimation Systems IEEE/CAA Journal of Automatica Sinica,2023,10(5):1181-1191
CSCD被引 0 次

2 Men Yunzhe Composite Anti-Disturbance Control of Hidden Semi-Markov Jump Systems via Disturbance Observer Journal of Systems Science and Complexity,2023,36(6):2255-2273
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号