Detection of Stealthy False Data Injection Attacks Against Cyber-Physical Systems: A Stochastic Coding Scheme
查看参考文献29篇
文摘
|
This paper, from the view of a defender, addresses the security problem of cyber-physical systems(CPSs)subject to stealthy false data injection(FDI)attacks that cannot be detected by a residual-based anomaly detector without other defensive measures. To detect such a class of FDI attacks, a stochastic coding scheme, which codes the sensor measurement with a Gaussian stochastic signal at the sensor side, is proposed to assist an anomaly detector to expose the FDI attack. In order to ensure the system performance in the normal operational context, a decoder is adopted to decode the coded sensor measurement when received at the controller side. With this detection scheme, the residual under the attack can be significantly different from that in the normal situation, and thus trigger an alarm. The design condition of the coding signal covariance is derived to meet the constraints of false alarm rate and attack detection rate. To minimize the trace of the coding signal covariance, the design problem of the coding signal is converted into a constraint non-convex optimization problem, and an estimation-optimization iteration algorithm is presented to obtain a numerical solution of the coding signal covariance. A numerical example is given to verify the effectiveness of the proposed scheme. |
来源
|
Journal of Systems Science and Complexity
,2022,35(5):1668-1684 【核心库】
|
DOI
|
10.1007/s11424-022-1005-z
|
关键词
|
Attack detection
;
cyber-physical systems(CPSs)
;
stealthy FDI attacks
;
stochastic coding
|
地址
|
1.
School of Automation, Beijing Institute of Technology, State Key Lab of Intelligent Control and Decision of Complex Systems, Beijing, 100081
2.
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120
3.
North China University of Technology, Key Laboratory of Fieldbus Technology and Automation of Beijing, Beijing, 100144
4.
China Industrial Control Systems Cyber Emergency Response Team, Beijing, 100040
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
the National Key R&D Program of China
;
北京市自然科学基金
|
文献收藏号
|
CSCD:7394050
|
参考文献 共
29
共2页
|
1.
Mahmoud M S. Modeling and control of cyber-physical systems subject to cyber attacks: A survey of recent advances and challenges.
Neurocomputing,2019,338:101-115
|
CSCD被引
24
次
|
|
|
|
2.
Pang Z H. A Novel Networked Predictive Control Method for Systems with Random Communication Constraints.
Journal of Systems Science & Complexity,2021,34(4):1364-1378
|
CSCD被引
3
次
|
|
|
|
3.
Pang Z H. Cloud-based time-varying formation predictive control of multi-agent systems with random communication constraints and quantized signals.
IEEE Trans. Circuits Syst. II, Exp. Briefs,2022,69(3):1282-1286
|
CSCD被引
4
次
|
|
|
|
4.
Fidler D P. Was stuxnet an act of war? Decoding a cyberattack.
IEEE Secur. Priv,2011,9(4):56-59
|
CSCD被引
4
次
|
|
|
|
5.
Zhang H. Optimal denial-of-service attack scheduling with energy constraint.
IEEE Trans. Autom. Control,2015,60(11):3023-3028
|
CSCD被引
33
次
|
|
|
|
6.
Qin J H. Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks.
IEEE Trans. Autom. Control,2018,63(6):1648-1663
|
CSCD被引
15
次
|
|
|
|
7.
Bai C Z. Data-injection attacks in stochastic control systems: Detectability and performance tradeoffs.
Automatica,2017,82:251-260
|
CSCD被引
12
次
|
|
|
|
8.
Kung E. The performance and limitations of ε-stealthy attacks on higher order systems.
IEEE Trans. Autom. Control,2017,62(2):941-947
|
CSCD被引
6
次
|
|
|
|
9.
Chen Y. Cyber-physical attacks with control objectives.
IEEE Trans. Autom. Control,2017,63(5):1418-1425
|
CSCD被引
1
次
|
|
|
|
10.
Zhang Q R. Optimal stealthy deception attack against cyber-physical systems.
IEEE Trans. Cybern,2020,50(9):3963-3972
|
CSCD被引
12
次
|
|
|
|
11.
Pang Z H. False data injection attacks against partial sensor measurements of networked control systems.
IEEE Trans. Circuits Syst. II, Exp. Briefs,2022,69(1):149-153
|
CSCD被引
5
次
|
|
|
|
12.
Qin J H. Optimal denial-of-service attack energy management against state estimation over an SINR-based network.
Automatica,2020,119:109090
|
CSCD被引
3
次
|
|
|
|
13.
Hou F Y. Deep reinforcement learning for optimal denial-of-service attacks scheduling.
Sci. China Inf. Sci,2022,65:162201
|
CSCD被引
3
次
|
|
|
|
14.
Wu G Y. Optimal Switching Integrity Attacks on Sensors in Industrial Control Systems.
Journal of Systems Science & Complexity,2019,32(5):1290-1305
|
CSCD被引
2
次
|
|
|
|
15.
Wu G Y. Optimal partial feedback attacks in cyber-physical power systems.
IEEE Trans. Autom. Control,2020,65(9):3919-3926
|
CSCD被引
6
次
|
|
|
|
16.
Li F F. False data injection attack for cyber-physical systems with resource constraint.
IEEE Trans. Cybern,2020,50(2):729-738
|
CSCD被引
7
次
|
|
|
|
17.
Guo Z Y. Optimal linear cyber-attack on remote state estimation.
IEEE Trans. Control Netw. Syst,2017,4(1):4-13
|
CSCD被引
24
次
|
|
|
|
18.
Guo Z Y. Worst-case stealthy innovation-based linear attack on remote state estimation.
Automatica,2018,89:117-124
|
CSCD被引
17
次
|
|
|
|
19.
Li Y G. Optimal stealthy false data injection attacks in cyber-physical systems.
Inf. Sci,2019,481:474-490
|
CSCD被引
6
次
|
|
|
|
20.
Pang Z H. Two-channel false data injection attacks against output tracking control of networked systems.
IEEE Trans. Ind. Electron,2016,63(5):3242-3251
|
CSCD被引
18
次
|
|
|
|
|