高性能双网络PAM/P123凝胶电解质的制备及其在二次Zn-MnO_2电池中的应用
Preparation of high performance dual network PAM/P123gel electrolyte and application in rechargeable Zn-MnO_2batteries
查看参考文献35篇
文摘
|
柔性能量存储设备处于下一代电源的最前沿,其中最重要的组件之一就是凝胶电解质。采用自由基聚合法制备PAM/P123锌离子电池用双网络凝胶电解质,结果表明:加入少量三嵌段共聚物P123,宏观上提高凝胶电解质的抗拉强度、韧性和抗压强度,同时微观上使凝胶骨架形成0.6μm的中孔并提高表面孔分布密度,进而提高了电解液的浸润性。 PAM/P123系列电解质不仅具有高平均溶胀率,而且在-30~65℃范围内电导率均高于纯PAM电解质。其中PAM/P123-2性能最佳,具有1920.79%平均溶胀率,且在0℃时的离子电导率为36.2mS·cm~(-1)。使用该凝胶电解质制备的柔性准固态Zn/MnO_2电池在0℃下充放电稳定,1000周次循环后容量保持率达82.39%。 |
其他语种文摘
|
Flexible energy storage devices are at the forefront of next-generation power supplies,one of the most important components of which is the gel electrolyte.The dual network gel electrolyte for PAM/P123zinc ion batteries was prepared by free radical polymerization.It was found that the addition of a small amount of triblock copolymer P123can macroscopically improve the tensile strength,toughness and compressive strength of the gel electrolyte.Microscopically,the gel skeleton forms 0.6μm mesopores and increases the surface pore distribution density,thereby improving the wettability of the electrolyte.The PAM/P123series electrolytes not only have a high average swelling rate,but also have a higher conductivity than pure PAM electrolyte in the range of-30℃to 65℃. Among which,PAM/P123-2is a series of electrolytes with the best performance,with an average swelling rate of 1920.79%,and the conductivity at 0 ℃is 36.2mS·cm~(-1).The Zn/MnO_2battery prepared by using PAM/P123-2gel electrolyte is stable during cycling at 0 ℃,with the capacity retention rate reaching 82.39%after 1000cycles. |
来源
|
材料工程
,2023,51(1):130-139 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000198
|
关键词
|
锌离子电池
;
柔性电池
;
水凝胶电解质
;
双网络
;
高电导率
|
地址
|
1.
广东工业大学材料与能源学院, 广州, 510006
2.
东莞理工学院材料科学与工程学院, 广东, 东莞, 523808
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
广东省科技厅对外合作项目
|
文献收藏号
|
CSCD:7390480
|
参考文献 共
35
共2页
|
1.
Wen Z. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells,and supercapacitors.
Science Advances,2016,2(10):97-99
|
CSCD被引
38
次
|
|
|
|
2.
Xiang X. ChemInform abstract:recent advances and prospects of cathode materials for sodium-ion batteries.
ChemInform,2015,27(36):5343-5364
|
CSCD被引
1
次
|
|
|
|
3.
Liu Q C. Flexible lithium-oxygen battery based on a recoverable cathode.
Nature Communications,2015,6:7892
|
CSCD被引
23
次
|
|
|
|
4.
Yu D. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage.
Nature Nanotechnology,2014,9(7):555
|
CSCD被引
71
次
|
|
|
|
5.
Xu C. Energetic zinc ion chemistry:the rechargeable zinc ion battery.
Angewandte Chemie,2012,51(4):933-935
|
CSCD被引
161
次
|
|
|
|
6.
Pan H. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions.
Nature Energy,2016,1(5):16039
|
CSCD被引
218
次
|
|
|
|
7.
Lee B. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide.
Scientific Reports,2014,4:6066
|
CSCD被引
32
次
|
|
|
|
8.
Li H. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte.
ACS Nano,2018,12(4):3140-3148
|
CSCD被引
52
次
|
|
|
|
9.
Li L. Advances and challenges for flexible energy storage and conversion devices and systems.
Energy Environmental Science,2014,7(7):2101-2122
|
CSCD被引
40
次
|
|
|
|
10.
Zeng Y. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasisolid-state Zn-MnO_2battery.
Advanced Materials,2017,29(26):1700274
|
CSCD被引
58
次
|
|
|
|
11.
Mao L J. Mechanical analyses and structural design requirements for flexible energy storage devices.
Advanced Energy Materials,2017,7(23):1700535
|
CSCD被引
11
次
|
|
|
|
12.
Zhong C. A review of electrolyte materials and compositions for electrochemical supercapacitors.
Chemical Society Reviews,2015,4(21):7484-7539
|
CSCD被引
127
次
|
|
|
|
13.
Huang J Q. Research progress in solid polymer electrolyte-lithium metal anode interface.
Journal of Materials Engineering,2022,50(5):62-77
|
CSCD被引
1
次
|
|
|
|
14.
Wang. Nature-inspired electrochemical energy-storage materials and devices.
Advanced Energy Materials,2017,7(5):1601709
|
CSCD被引
1
次
|
|
|
|
15.
Li H. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte.
ACS Nano,2018,12(3):3140-3148
|
CSCD被引
52
次
|
|
|
|
16.
Zeng Y X. Rationally designed Mn_2O_3-ZnMn_2O_4 hollow heterostructures from metal-organic frameworks for stable Zn-ion storage.
Angewandte Chemie,2021,133(49):25997-26002
|
CSCD被引
1
次
|
|
|
|
17.
Wang Z. A flexible rechargeable zincion wire-shaped battery with shape memory function.
Journal of Material Chemistry A,2018,6(18):8549-8557
|
CSCD被引
15
次
|
|
|
|
18.
Li G Z. Rechargeable Zn-ion batteries with high power and energy densities:a two-electron reaction pathway in birnessite MnO_2cathode materials.
Journal of Materials Chemistry A,2020,8(4):1975-1985
|
CSCD被引
16
次
|
|
|
|
19.
Dissanayake M A K L. Infrared spectroscopic study of the phases and phase transitions in poly(ethylene oxide) and poly(ethylene oxide)-lithium trifluoromethanesulfonate complexes.
Macromolecules,1995,28(15):5312-5319
|
CSCD被引
2
次
|
|
|
|
20.
Su Y L. FTIR spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO-PPO-PEO block copolymer micelles.
Langmuir,2002,18(14):5370-5374
|
CSCD被引
7
次
|
|
|
|
|