碳化硅陶瓷导热性能的研究进展
Research progress in thermal conductivity of SiC ceramics
查看参考文献74篇
文摘
|
SiC陶瓷具有优异的力学性能、热学性能、抗热震性能、抗化学侵蚀性能和抗氧化性能,是热交换器设备的常用基体材料。由于原料、成型工艺、烧成工艺和烧结助剂等因素制约,SiC陶瓷含有较多气孔、晶界、杂质和缺陷,导致其常温热导率(≤270W·m~(-1)·K~(-1))低于碳化硅单晶材料(6H-SiC,490W·m~(-1)·K~(-1)),且不同制备工艺下热导率存在较大差异。本文主要分析了温度、气孔、晶体结构和第二相对SiC陶瓷导热性能的影响,归纳了热压烧结法、放电等离子烧结法、无压烧结法、重结晶烧结法和反应烧结法制备高导热SiC陶瓷的特点,对优化烧结助剂种类及含量、高温热处理和添加高导热第二相等改善SiC陶瓷导热性能的主要措施进行阐述,并展望了未来高导热SiC陶瓷的研究方向,为未来制备低成本、高导热SiC质热交换器提供理论参考。 |
其他语种文摘
|
SiC ceramics has been extensively used in heat exchangers because of their excellent mechanical properties,high thermal conductivity,and superior thermal shock,corrosion,and oxidation resistance.However,there is a wide variation in the thermal conductivity of SiC ceramics, depending on the raw materials,molding process,sintering process,and sintering additives.The thermal conductivity of SiC ceramics(≤270W·m~(-1)·K~(-1))is much lower than that of 6H-SiC single crystals(490 W·m~(-1)·K~(-1))because of pores,grain boundaries,impurities,and defects in SiC ceramics.In this work,the important factors affecting the thermal conductivity of SiC ceramics were analyzed,including temperature,pore,crystal structure,and second phase.Further,the preparation processes of high conductivity SiC ceramics were systematically compared based on hot-pressed sintering,spark plasma sintering,pressureless sintering,recrystallization sintering,and reaction sintering.The improvement measures of thermal conductivity of SiC ceramics were summarized, including the optimization of the type and content of sintering aids,high-temperature annealing,and adding a high-thermal-conductivity second phase.Finally,the prospects and research directions of lowcost and high-thermal-conductivity SiC ceramics are proposed. |
来源
|
材料工程
,2023,51(1):64-75 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001040
|
关键词
|
SiC陶瓷
;
热导率
;
声子散射
;
晶界
;
第二相
;
烧结助剂
;
热处理
|
地址
|
武汉科技大学, 湖北省省部共建耐火材料与冶金国家重点实验室, 武汉, 430081
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
国家自然科学基金区域创新发展联合基金
;
湖北省自然科学基金面上项目
|
文献收藏号
|
CSCD:7390473
|
参考文献 共
74
共4页
|
1.
李新创.
中国钢铁工业节能低碳发展报告(2020),2020
|
CSCD被引
1
次
|
|
|
|
2.
朱丽娜. 快堆钠-空气热交换器翅片管传热及阻力特性试验研究.
原子能科学技术,2020,54(11):2031-2036
|
CSCD被引
1
次
|
|
|
|
3.
李科. 不同热边界条件下板翅式换热器轴向导热对换热的影响.
化工学报,2021,72(4):1956-1964
|
CSCD被引
1
次
|
|
|
|
4.
Jamzad P. Development of novel plate heat exchanger using natural graphite sheet.
International Journal of Heat and Mass Transfer,2019,131:1205-1210
|
CSCD被引
2
次
|
|
|
|
5.
Kroulikovat. Heat exchanger for air-liquid application with chaotised polymeric hollow fibres.
Applied Thermal Engineering,2021,197:117365
|
CSCD被引
1
次
|
|
|
|
6.
Wu J F. Microstructure and performances of corundum-mullite composite ceramics for heat transmission pipelines:effects of Ho2O_3additive content.
Ceramics International,2021,47(24):34794-34801
|
CSCD被引
1
次
|
|
|
|
7.
Haunstetter J. Ceramic high temperature plate fin heat exchanger:experimental investigation under high temperatures and pressures.
Applied Thermal Engineering,2019,151:364-372
|
CSCD被引
2
次
|
|
|
|
8.
Nakano H. Microstructural characterization of high-thermal-conductivity SiC ceramics.
Journal of the European Ceramic Society,2004,24(14):3685-3690
|
CSCD被引
10
次
|
|
|
|
9.
Tessier-Doyen N. Thermal conductivity of alumina inclusion/glass matrix composite materials: local and macroscopic scales.
Journal of the European Ceramic Society,2007,27(7):2635-2640
|
CSCD被引
1
次
|
|
|
|
10.
Schneider H. Mullite:crystal structure and related properties.
Journal of the American Ceramic Society,2015,98(10):2948-2967
|
CSCD被引
12
次
|
|
|
|
11.
Xu M. Recent advances and challenges in silicon carbide(SiC)ceramic nanoarchitectures and their applications.
Materials Today Communications,2021,28:102533
|
CSCD被引
8
次
|
|
|
|
12.
Xing G C. Fabrication and characterisation of AlN-SiC porous composite ceramics by nitridation of Al4SiC4.
Ceramics International,2020,46(4):4959-4967
|
CSCD被引
3
次
|
|
|
|
13.
洪智亮. SiC/SiC复合材料在高温空气中的氧化行为.
材料工程,2021,49(5):144-150
|
CSCD被引
9
次
|
|
|
|
14.
Wu X X. Fabrication of novel AlN-SiCC refractories by nitrogen gas-pressure sintering of Al4SiC4.
Journal of the European Ceramic Society,2022,42(8):3634-3643
|
CSCD被引
3
次
|
|
|
|
15.
孟红涛. 换热式两段焦炉用SiC换热器的研制及应用.
耐火材料,2019,53(5):380-383
|
CSCD被引
1
次
|
|
|
|
16.
Ngwashi D K. Recent review on failures in silicon carbide power MOSFETs.
Microelectronics Reliability,2021,123:114169
|
CSCD被引
3
次
|
|
|
|
17.
Slack G A. Thermal conductivity of pure and impure silicon, silicon carbide,and diamond.
Journal of Applied Physics,1965,35(12):3460-3466
|
CSCD被引
1
次
|
|
|
|
18.
Kostanovskiy A V. Thermal conductivity of silicicated silicon carbide at 1400-2200K.
High Temperature,2019,57(1):122-123
|
CSCD被引
1
次
|
|
|
|
19.
Ventura G.
Thermal properties of solids at room and cryogenic temperatures,2014:145-146
|
CSCD被引
1
次
|
|
|
|
20.
张驰. 碳化硅材料热导率计算研究进展.
硅酸盐学报,2015,43(3):268-275
|
CSCD被引
2
次
|
|
|
|
|