搅拌摩擦沉积增材技术研究进展
Research progress in additive friction stir deposition
查看参考文献60篇
文摘
|
搅拌摩擦沉积增材(additive friction stir deposition,AFSD)技术是一种新兴固相增材制造技术,采用金属棒材、粉材、丝材为增材材料,增材过程中依靠增材材料与板材摩擦产生摩擦热以及材料剧烈变形产生的塑性变形热形成黏塑性沉积层,沉积层逐层堆积形成三维实体结构件;基于其固相特征,具有熔覆增材技术不可比拟的优势,目前已成为增材制造领域的研究热点。本文从设备研制、微观组织演变、材料流动特性、力学性能变化四个方面综述了AFSD技术最新国内外研究进展;分析了该技术应用于工程实际的可行性,展望了在增材制造、材料修复、零件加固、制造金属涂层领域的应用前景;最后指出了产热机制、材料流动特性、辅助优化工艺、智能化设备研制等为未来的研究方向。 |
其他语种文摘
|
The additive friction stir deposition (AFSD)technology is a new solid-state additive manufacturing technology.The metal bars,powders,and wires are used as feedstock.During the additive process,the friction heat generated by the friction between feedstock and the plate and the plastic deformation heat generated by the severe deformation of feedstock form a viscoplastic deposition layer.The deposition layer is stacked layer by layer to form three-dimensional parts. Because of its solid phase characteristics,it has many advantages over fused-based metal additive technologies and has become a research hotspot in the field of additive manufacturing.In this paper, the latest research progress of AFSD technology at home and abroad was reviewed from four aspects of equipment development,microstructure evolution,material flow characteristics and mechanical properties change.The feasibility of the application of this technology in engineering practice was analyzed and the application prospect in the field of metal coating reinforcement for material repair parts of additive manufacturing was forecasted.Finally,it was pointed out that the heat generation mechanism,material flow characteristics,auxiliary optimization process,and intelligent equipment development are the future research directions. |
来源
|
材料工程
,2023,51(1):52-63 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000322
|
关键词
|
搅拌摩擦沉积增材
;
微观组织演变
;
材料流动特性
;
力学性能变化
|
地址
|
1.
南京理工大学机械工程学院, 南京, 210094
2.
航天工程装备(苏州)有限公司, 江苏, 苏州, 215200
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
江苏省科技成果转化专项项目
;
苏州市重点研发产业化重点项目
|
文献收藏号
|
CSCD:7390472
|
参考文献 共
60
共3页
|
1.
Frazier W E. Metal additive manufacturing:a review.
Journal of Materials Engineering and Performance,2014,23(6):1917-1928
|
CSCD被引
215
次
|
|
|
|
2.
张学军. 3D打印技术研究现状和关键技术.
材料工程,2016,44(2):122-128
|
CSCD被引
119
次
|
|
|
|
3.
石磊. 基于搅拌摩擦的金属固相增材制造研究进展.
材料工程,2022,50(1):1-14
|
CSCD被引
12
次
|
|
|
|
4.
Zhang X. Influence of erbium addition on the defects of selective laser-melted 7075aluminium alloy.
Virtual and Physical Prototyping,2021,17(2):406-418
|
CSCD被引
1
次
|
|
|
|
5.
Aversa A. Laser powder bed fusion of a high strength Al-Si-Zn-Mg-Cu alloy.
Metals,2018,8(5):300
|
CSCD被引
2
次
|
|
|
|
6.
Shah L H. Tool eccentricity in friction stir welding:a comprehensive review.
Science and Technology of Welding and Joining,2019,24(6):566-578
|
CSCD被引
3
次
|
|
|
|
7.
Bernard D. High speed friction stir welding of 5182-H111alloy:temperature and microstructural insights into deformation mechanisms.
Metals and Materials International,2021,28(7):2821-2836
|
CSCD被引
1
次
|
|
|
|
8.
Zhang J. High-speed FSW aluminum alloy 7075microstructure and corrosion properties.
Proceedings of the 9th Symposium on Friction Stir Welding and Processing(FSW/P),2017:125-135
|
CSCD被引
1
次
|
|
|
|
9.
Ramulu P J. Influence of tool rotation speed and feed rate on the forming limit of friction stir welded AA6061-T6sheets.
Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2013,227(3):520-541
|
CSCD被引
1
次
|
|
|
|
10.
Mishra R S. Friction stir welding and processing.
Materials Science and Engineering:Reports,2005,50(1/2):1-78
|
CSCD被引
576
次
|
|
|
|
11.
Klopstock H.
An improved method of joining or welding metals:UK572789,1941
|
CSCD被引
1
次
|
|
|
|
12.
Bedford G. On the thermo-mechanical events during friction surfacing of high speed steels.
Surface and Coatings Technology,2001,141(1):34-39
|
CSCD被引
3
次
|
|
|
|
13.
Garcia D. In situinvestigation into temperature evolution and heat generation during additive friction stir deposition:a comparative study of Cu and Al-Mg-Si.
Additive Manufacturing,2020,34:101386
|
CSCD被引
15
次
|
|
|
|
14.
Stubblefield G G. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process,additive friction stir-deposition (AFS-D).
Materials & Design,2021,202:109514
|
CSCD被引
5
次
|
|
|
|
15.
Wendell T V.
Solid state additive manufacturing system:US20090200275A1,2009
|
CSCD被引
1
次
|
|
|
|
16.
Calvert J R.
Microstructure and mechanical properties of WE43alloy produced via additive friction stir technology,2015
|
CSCD被引
2
次
|
|
|
|
17.
MELD公司.
MELD公司官网,2020
|
CSCD被引
2
次
|
|
|
|
18.
万龙.
一种搅拌摩擦增材装置及增材制造方法: CN112496522B,2021
|
CSCD被引
1
次
|
|
|
|
19.
树西.
一种颗粒式搅拌摩擦增材制造装置及方法: CN113118612A,2021
|
CSCD被引
1
次
|
|
|
|
20.
石磊.
一种填丝静轴肩搅拌摩擦焊接与增材制造装置及方法:CN112958902A,2021
|
CSCD被引
1
次
|
|
|
|
|