镁基复合材料界面调控研究进展
Research progress in interfacial regulation of magnesium matrix composites
查看参考文献112篇
文摘
|
界面是影响镁基复合材料综合性能的关键因素,如何进行界面调控一直是镁基复合材料的研究热点。本文围绕镁基复合材料三种界面结构类型(共格界面、半共格界面和非共格界面),针对影响界面性能的两个关键问题(界面润湿性和界面反应),综述了界面优化方案的研究进展,提出了实现良好界面结合的界面结构设计与调控准则:良好润湿性与轻微界面反应。针对镁基复合材料的界面性能提升,可以考虑添加稀土元素,起到净化界面、改善润湿性的作用;根据工程需要选择基体和增强体,得到某方面性能优异的复合材料;开发新的增强体表面涂层,充分提高界面结合能力;通过第一性原理等计算模拟方法,深入探究界面结构与界面性能之间的关系。 |
其他语种文摘
|
Interface is a key factor affecting the comprehensive performance of magnesium matrix composites,and how to carry out interfacial modulation has been a hot research topic in magnesium matrix composites.Focusing on three types of interface structures of magnesium matrix composites (coherent,semi-coherent and incoherent)and two key issues(interfacial wettability and interfacial reaction)affecting the interface properties,the research progress of interface optimization schemes was reviewed in this paper and the guidelines for the design and regulation of interfacial structures to achieve good interfacial bonding were proposed:good wettability and slight interfacial reaction.In view of the improvement of interface properties of magnesium matrix composites,the addition of rare earth elements can be considered in the future to purify the interface and improve wettability.The matrix and reinforcement are selected according to engineering needs to obtain composite materials with excellent performance in certain aspects.New reinforcement surface coatings will be developed to fully enhance the capabilities of interfacial bonding.First-principles and other computational simulation methods will be used to deeply explore the relationship between interface structure and interface performance. |
来源
|
材料工程
,2023,51(1):1-15 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001213
|
关键词
|
镁基复合材料
;
界面结构
;
界面结合强度
;
界面结合优化准则
|
地址
|
南昌大学先进制造学院, 江西省轻质高强结构材料重点实验室, 南昌, 330031
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金项目
;
国家重点研发计划
|
文献收藏号
|
CSCD:7390468
|
参考文献 共
112
共6页
|
1.
Chen L Y. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.
Nature,2015,528(7583):539-543
|
CSCD被引
65
次
|
|
|
|
2.
Prado M T. Materials science: strength ceiling smashed for light metals.
Nature,2015,528(7583):486-487
|
CSCD被引
1
次
|
|
|
|
3.
Trang T T T. Designing a magnesium alloy with high strength and high formability.
Nat Commun,2018,9(1):2522
|
CSCD被引
44
次
|
|
|
|
4.
Schaller R. Metal matrix composites,a smart choice for high damping materials.
Journal of Alloys and Compounds,2003,355(1/2):131-135
|
CSCD被引
40
次
|
|
|
|
5.
Wu Z X. Mechanistic origin and prediction of enhanced ductility in magnesium alloys.
Science,2018,359(6374):447-452
|
CSCD被引
91
次
|
|
|
|
6.
张从阳. SiC_p/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理.
材料工程,2020,48(4):108-115
|
CSCD被引
1
次
|
|
|
|
7.
Wonsiewicz B.
Plasticity of magnesium crystals,1967
|
CSCD被引
1
次
|
|
|
|
8.
Pollock T M. Weight loss with magnesium alloys.
Sciense,2010,328(5981):986-987
|
CSCD被引
146
次
|
|
|
|
9.
Chang G. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond.
Acta Materialia,2018,160:235-246
|
CSCD被引
18
次
|
|
|
|
10.
Riccardo C. Microstructural and mechanical properties of Al-based composites reinforced with in-situ and ex-situ Al_2O_3nanoparticles.
Journal of Engineering,2016,18(4):550-558
|
CSCD被引
1
次
|
|
|
|
11.
Zhang X. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction.
Materials Science and Engineering:A,2017,705:153-159
|
CSCD被引
21
次
|
|
|
|
12.
袁秋红. 碳纳米管增强镁基复合材料弹性模量的研究进展.
中国有色金属学报,2015,25(1):86-97
|
CSCD被引
14
次
|
|
|
|
13.
何阳. 镁基复合材料研究进展及新思路.
航空材料学报,2018,38(4):26-36
|
CSCD被引
23
次
|
|
|
|
14.
Abbas A. Tribological effects of carbon nanotubes on magnesium alloy AZ31and analyzing aging effects on CNTs/AZ31composites fabricated by stir casting process.
Tribology International,2020,142:105982
|
CSCD被引
8
次
|
|
|
|
15.
Huang S J. Effect of CNT on microstructure,dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy.
Journal of Materials Research and Technology,2019,8(5):4273-4286
|
CSCD被引
8
次
|
|
|
|
16.
Abazari S. Carbon nanotubes(CNTs)-reinforced magnesium-based matrix composites:a comprehensive review.
Materials(Basel),2020,13(19):4421
|
CSCD被引
9
次
|
|
|
|
17.
Ye H Z. Review of recent studies in magnesium matrix composites.
Journal of Materials Science,2004,39(20):6153-6171
|
CSCD被引
60
次
|
|
|
|
18.
Zhou J. A great improvement of tensile properties of Cf/AZ91Dcomposite through grafting CNTs onto the surface of the carbon fibers.
Materials Science and Engineering:A,2019,762:138061
|
CSCD被引
2
次
|
|
|
|
19.
Li H. Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated vianovel in situ synthesis process.
Journal of Alloys and Compounds,2019,785:146-155
|
CSCD被引
9
次
|
|
|
|
20.
Vahedi F. Microstructural evolution and mechanical properties of thermomechanically processed AZ31magnesium alloy reinforced by micro-graphite and nano-graphene particles.
Journal of Alloys and Compounds,2020,815:152231
|
CSCD被引
6
次
|
|
|
|
|