黑色岩系地质高背景区土壤锌富集特征与环境活性
Accumulation and Environmental Availability of Zinc in Soils from a High Geological Background Area Underlain by Black Shale
查看参考文献35篇
文摘
|
锌(Zn)既是生物体必需元素又是有害元素,在复合污染的情况下,Zn在植物吸收、转运和富集镉的过程中发挥着重要作用。以往研究主要关注镉的活性,忽略了Zn的环境活性。基于此,本研究以黑色岩系地质高背景区自然富Zn土壤为对象,重点研究了土壤Zn的活性态和潜在活性态,讨论了Zn活性的影响因素和环境意义。结果表明,研究区土壤Zn富集,平均含量可达457 mg/kg,80%的土壤样品超过我国农用地土壤污染风险筛选值。CaCl_2提取态Zn含量平均值为0.92 mg/kg,平均提取率仅为0.26%,说明研究区土壤Zn的生物活性低,且随着pH升高而降低。EDTA提取态Zn的平均含量为12.7 mg/kg,平均提取率为2.74%,潜在有效态比例也较低。活性态在潜在活性态中占比为7.63%,活化潜力较大,且随着土壤pH的升高而降低。研究区土壤溶液中Zn∶Cd比较低,可能有利于植物对镉的吸收。开展土壤Zn活性的研究,对理解复合污染区土壤镉的活性变化及调控具有重要意义。 |
其他语种文摘
|
Zinc (Zn) is an essential element and is toxic at high concentration.Zinc plays a vital role in the processes of plant uptake,translocation and accumulation of Cd under Cd-Zn combined contamination.However,previous studies usually focused on the mobility of Cd and ignored the environmental availability of Zn.Therefore,this study collected naturally occurring Zn-rich soils from a high geological background area underlain by black shale,and quantified the mobile and mobilizable pools of Zn,and also investigated the factors influencing the environmental availability of Zn.The results showed that soils from the study area had an average Zn content of 457 mg/kg,with about 80% of samples exceeding the risk screening values of Chinese agricultural soils.The average content of CaCl_2 extractable Zn,which represent the mobile pool,was 0.92 mg/kg,presenting 0.26% of total Zn.Mobile Zn decreased with increased soil pH.The average content of EDTA extractable Zn,which represent the mobilizable pool,was 12.7 mg/kg,presenting 2.74% of total Zn.Mobile Zn accounted for 7.63% of the mobilizable fraction,indicated the potential of Zn mobility,and the mobility increased with decreased pH.Soils from the study area had low Zn∶Cd molar ratio,which may favor the uptake of Cd by plants.The finding of this study is important for understanding and regulation of Cd availability in Zn-Cd contaminated soils. |
来源
|
地球与环境
,2022,50(4):490-497 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2022.50.005
|
关键词
|
自然富集
;
土壤
;
重金属
;
活性
;
生物有效性
|
地址
|
1.
广东石油化工学院生物与食品工程学院, 广东, 茂名, 525000
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
地质学 |
基金
|
贵州省项目
;
贵州省高层次留学人才择优资助项目
;
广东省茂名市科技计划项目
|
文献收藏号
|
CSCD:7385298
|
参考文献 共
35
共2页
|
1.
Noulas C. Zinc in soils, water and food crops.
Journal of Trace Elements in Medicine and Biology,2018,49:252-260
|
CSCD被引
14
次
|
|
|
|
2.
Huang T. Grain zinc concentration and its relation to soil nutrient availability in different wheat cropping regions of China.
Soil & Tillage Research,2019,191:57-65
|
CSCD被引
8
次
|
|
|
|
3.
Wan Y. Ecological criteria for zinc in Chinese soil as affected by soil properties.
Ecotoxicology and Environmental Safety,2020,194:110418
|
CSCD被引
10
次
|
|
|
|
4.
生态环境部.
土壤环境质量农用地土壤污染风险管控标准(GB 15618-2018),2018
|
CSCD被引
7
次
|
|
|
|
5.
Adriano D C.
Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risk of metals. 2nd Edition,2001
|
CSCD被引
1
次
|
|
|
|
6.
魏复盛. 中国土壤环境背景值研究.
环境科学,1991,12(4):12-19
|
CSCD被引
255
次
|
|
|
|
7.
环境保护部.
全国土壤污染状况调查公报,2014
|
CSCD被引
423
次
|
|
|
|
8.
Wen H. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes.
Applied Geochemistry,2015,52:147-154
|
CSCD被引
34
次
|
|
|
|
9.
Liu X. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment.
Science of the Total Environment,2021,779:146438
|
CSCD被引
9
次
|
|
|
|
10.
Wen Y B. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China.
Chemosphere,2020,245:125620
|
CSCD被引
39
次
|
|
|
|
11.
Liu Y Z. Geogenic pollution, fractionation and potential risks of Cd and Zn in soils from a mountainous region underlain by black shale.
Science of the Total Environment,2021,760:143426
|
CSCD被引
19
次
|
|
|
|
12.
陈梓杰. 典型黑色岩系地质高背景区农田土壤-玉米系统重金属富集特征.
生态学杂志
|
CSCD被引
1
次
|
|
|
|
13.
环境保护部.
土壤环境监测技术规范(HJ/T1662-2004),2004
|
CSCD被引
1
次
|
|
|
|
14.
Hendershot W H. A simple barium chloride method for determining cation exchange capacity and exchangeable cations.
Soil Science Society America Journal,1986,50:605-608
|
CSCD被引
40
次
|
|
|
|
15.
Voegelin A. Zinc fractionation in contaminated soils by sequential and single extractions: Influence of soil properties and zinc content.
Journal of Environmental Quality,2008,37:1190-1200
|
CSCD被引
2
次
|
|
|
|
16.
Rivera M B. Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk?.
Science of the Total Environment,2016:560-561
|
CSCD被引
1
次
|
|
|
|
17.
Ma Q. Comparing CaCl_2, EDTA and DGT methods to predict Cd and Ni accumulation in rice grains from contaminated soils.
Environmental Pollution,2020,260:114042
|
CSCD被引
15
次
|
|
|
|
18.
Muller G. Index of geoaccumulation in sediments of the Rhine River.
Geojournal,1969,2:108-118
|
CSCD被引
641
次
|
|
|
|
19.
侯青叶.
中国土壤地球化学参数,2020
|
CSCD被引
29
次
|
|
|
|
20.
Hakanson L. An ecological risk index for aquatic pollution control-A sedimentological approach.
Water Research,1980,14:975-1001
|
CSCD被引
2382
次
|
|
|
|
|