金融科技的风险管理赋能:基于中国银行业的经验研究
The power of FinTech in risk management:Evidence from China's banking institutions
查看参考文献49篇
文摘
|
金融科技是赋能银行创新改革的关键.本文利用文本挖掘技术收集城市金融科技专利数据,创新构建城市金融科技发展水平指标,并基于2013-2018年中国148家商业银行的微观面板数据,定量考察城市金融科技发展对银行风险的影响.研究发现:城市金融科技发展赋能银行显著降低风险水平,且这一赋能效应对中小银行的影响更为显著.为控制内生性问题,本文选取"金融科技"主题类关键词获得城市层面的百度新闻数作为工具变量,实证结果依旧显著.主要发现在替换代理变量定义方法,控制空间溢出效应等一系列稳健性检验后依然成立.机制分析表明:金融科技赋能通过减缓信息不对称,促进业务边际拓展和增强风险应对能力等渠道实现银行风险降低的作用;同时,市场监管能力的提高和城市居民征信意识的增强均可以进一步提升金融科技的风险管理赋能效应.在商业银行布局金融科技进程加快的背景下,全面识别金融科技赋能银行风险管理的经济后果及其内在影响机制,对防范化解金融风险,促进金融业持续高质量发展具有重要启示. |
其他语种文摘
|
Financial technology (FinTech) is critical in empowering banks' reform and innovation,especially in risk management activities.This study uses textual mining methodology to collect and identify the FinTech patent applications at the city level and creatively establishes the local FinTech development index.With the annual data of 148 commercial banks from 2013-2018 in China,this paper quantitively examines whether and how local development of FinTech affects financial institutions' risk management capacity.The main findings show that the FinTech development can significantly reduce the banks' risk,and more significantly in medium-sized banks.This paper employs the amount of news on FinTech related keywords in the Baidu searching engine at the city level as the instrumental variable to alleviate the endogeneity problem and finds robust results.The empirical findings also remain robust after using other alternative measurement on main variables and controlling spatial spillover effects.The mechanism analysis verifies that local FinTech development can significantly reduce the information asymmetry,promote business expansion,and strengthen the banks' risk management ability,thus contributing to the reduction of banks' risk.Moreover,the local regulatory authority efforts and the citizens' awareness of credit consciousness will increase the power of FinTech in risk management.Under the circumstance of the emerging FinTech and its pervasive adoption in commercial banks,profoundly understanding whether and how the FinTech development affects bank risk management will prevent and dissolve the financial risks and contribute to the high-quality development in the financial industry. |
来源
|
系统工程理论与实践
,2022,42(12):3201-3215 【核心库】
|
DOI
|
10.12011/SETP2021-2068
|
关键词
|
金融科技
;
银行风险
;
信息不对称
;
业务边际拓展
;
风险应对能力
|
地址
|
1.
中国人民大学财政金融学院, 北京, 100872
2.
中国科学院大学经济与管理学院, 北京, 100190
3.
中国科学院大学数字经济监测预测预警与政策仿真教育部哲学社会科学实验室(培育), 北京, 100190
4.
北京交通大学经济管理学院, 北京, 100044
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6788 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金
;
北京市社会科学基金一般项目
;
国家教育部人文社会科学研究青年项目
|
文献收藏号
|
CSCD:7373166
|
参考文献 共
49
共3页
|
1.
张健华. 银行风险,贷款规模与法律保护水平.
经济研究,2012,47(5):18-30
|
CSCD被引
2
次
|
|
|
|
2.
胡题. 基于GMM方法的银行业竞争程度对银行风险影响的研究.
中国管理科学,2013,21(S1):249-254
|
CSCD被引
1
次
|
|
|
|
3.
Sutherland A G. Does credit reporting lead to a decline in relationship lending? Evidence from information sharing technology.
Journal of Accounting and Economics,2018,66(1):123-141
|
CSCD被引
1
次
|
|
|
|
4.
邱晗. 金融科技对传统银行行为的影响——基于互联网理财的视角.
金融研究,2018(11):17-29
|
CSCD被引
21
次
|
|
|
|
5.
Choi T M. Recent development in big data analytics for business operations and risk management.
IEEE Transactions on Cybernetics,2016,47(1):1-12
|
CSCD被引
6
次
|
|
|
|
6.
Lin M. Judging borrowers by the company they keep.
Management Science,2013,59(1):17-35
|
CSCD被引
43
次
|
|
|
|
7.
Philippon T.
The FinTech opportunity,2016
|
CSCD被引
2
次
|
|
|
|
8.
Donald D C. Smart precision finance for small businesses funding.
European Business Organization Law Review,2020,21(1):199-217
|
CSCD被引
1
次
|
|
|
|
9.
Vives X. Digital disruption in banking.
Annual Review of Financial Economics,2019,11(1):243-272
|
CSCD被引
3
次
|
|
|
|
10.
Ravisankar P. Detection of financial statement fraud and feature selection using data mining techniques.
Decision Support Systems,2011,50(2):491-500
|
CSCD被引
10
次
|
|
|
|
11.
Lin C C. Detecting the financial statement fraud: The analysis of the differences between data mining techniques and experts' judgments.
Knowledge-Based Systems,2015,89:459-470
|
CSCD被引
7
次
|
|
|
|
12.
Ahmed M. A survey of anomaly detection techniques in financial domain.
Future Generation Computer Systems,2016,55(2):278-288
|
CSCD被引
9
次
|
|
|
|
13.
Livshits I D. The democratization of credit and the rise in consumer bankruptcies.
Review of Economic Studies,2016,83(4):1673-1710
|
CSCD被引
1
次
|
|
|
|
14.
Hajek P. Mining corporate annual reports for intelligent detection of financial statement fraud-A comparative study of machine learning methods.
Knowledge-Based Systems,2017,128:139-152
|
CSCD被引
7
次
|
|
|
|
15.
Chen M A. How valuable is FinTech innovation.
Review of Financial Studies,2019,32(5):2062-2106
|
CSCD被引
15
次
|
|
|
|
16.
Goldstein I. To FinTech and beyond.
Review of Financial Studies,2019,32(5):1647-1661
|
CSCD被引
16
次
|
|
|
|
17.
郭品. 互联网金融,存款竞争与银行风险承担.
金融研究,2019(8):58-76
|
CSCD被引
5
次
|
|
|
|
18.
金洪飞. 金融科技,银行风险与市场挤出效应.
财经研究,2020,46(5):52-65
|
CSCD被引
7
次
|
|
|
|
19.
李春涛. 金融科技与企业创新-新三板上市公司的证据.
中国工业经济,2020(1):81-98
|
CSCD被引
56
次
|
|
|
|
20.
寇宗来. 中国企业的专利行为:特征事实以及来自创新政策的影响.
经济研究,2020,55(3):83-99
|
CSCD被引
20
次
|
|
|
|
|