基于临床-影像组学列线图模型术前预测进展期胃癌神经侵犯的价值
The value of nomogram model based on clinical and radiomics features in preoperative prediction of perineural invasion of advanced gastric cancer
查看参考文献24篇
黄钰迅
1,2,3,4
李瑞
1,2,3,4
张宝腾
5
牛猛
2,3,4
刘钊
2,3,4
郭顺林
2,3,4
*
文摘
|
目的:探讨基于增强CT影像组学特征和临床独立危险因素构建的联合模型及其列线图在术前预测进展期胃癌(AGC)周围神经侵犯(PNI)中的价值。方法:回顾性分析171例AGC患者的CT图像和临床资料。将171例患者按7:3的比例随机分为训练组119例(PNI阳性83例,阴性36例)和验证组52例(PNI阳性37例,阴性15例)。依次使用Spearman相关性分析及绝对收缩与选择算子(LASSO)对增强CT静脉期图像上提取的组学特征进行降维和筛选,并建立影像组学标签(V-Radscore) 。使用单因素分析比较PNI阳性组与阴性组之间的V-Radscore和术前临床指标值,将差异具有统计学意义的指标纳入多因素logistic回归分析,得到PNI相关的独立危险因素,同时构建影像组学模型(V)、临床模型(C)和组合模型(V+C),并在训练组构建组合模型的列线图。采用受试者工作特征曲线(ROC)的曲线下面积(AUC)、敏感度、特异度和符合率来评价模型的诊断效能,使用校准曲线评价列线图模型在训练组和验证组中的拟合程度,使用决策曲线分析(DCA)来评价列线图的临床应用价值。结果:PNI的独立危险因素包括V-Radscore、CT报告的肿瘤部位、T分期和N分期(P均<0.05)。 PNI阳性组的V-Radscore高于阴性组(Z=5.536,P<0.001)。在验证组中,列线图模型预测PNI的AUC值为0.865,显著高于临床模型(AUC=0.786,χ~2=2.108,P=0.035)和影像组学模型(AUC= 0.681,χ~2=2.083,P=0.037),其预测PNI的敏感度、特异度和符合率分别为0.838、0.800和0.827。校准曲线显示列线图在训练组(χ~2=5.846,P=0.661>0.05)及验证组(χ~2=8.170,P=0.417>0.05)中的预测概率与实际概率的一致性良好。DCA显示模型具有良好的临床应用价值。结论:临床-影像组学列线图模型在AGC患者PNI的术前预测方面具有可行性,有望帮助临床医师优化术前决策。 |
其他语种文摘
|
Objective:To explore the value of nomogram model based on contrast-enhanced CT radiomics and clinical features in preoperative prediction of perineural invasion(PNI)of advanced gastric cancer(AGC).Methods:The CT images and clinical data of 171patients with AGC were retrospectively analyzed.All patients were randomly divided into 119patients(including 83patients with PNI and 36patients without PNI)in the training cohort,and 52patients(including 37patients with PNI and 15patients without PNI)in the testing cohort at a rate of 7:3.The spearman correlation analysis (SPM)and least absolute shrinkage and selection operator(LASSO)were used for dimension reduction and selection of the radiomics features extracted from contrast-enhanced CT venous images,and the selected features were used to calculate the Radscore of venous images(V-Radscore).Univariate analysis was used to compare V-Radscore and the preoperative clinical indicators between PNI positive and PNI negative groups,and the statistically significant indicators were incorporated into multivariate logistic regression to obtain the independent risk factors of PNI,the radiomics model(V),clinical model(C)and combined model(C+V)were built at the same time,and then a nomogram was developed to predict PNI in training group.The area under curve(AUC)of receiver operating characteristic (ROC),sensitivity,specificity and accuracy were used to evaluate the diagnostic efficiency of nomogram model.The calibration curves and decision curve analysis(DCA)were used to assess the calibration and clinical usefulness of nomogram model,respectively.Results:The independent risk factors of PNI included V-Radscore,CT-reported tumor site,T-stage,and N-stage(P<0.05),and the V-Radscore in PNI positive group was significantly higher than that in negative group (Z =5.536,P < 0.001).In the testing cohort,the AUC of nomogram model for predicting PNI was 0.865,which was significantly higher than that of the clinical model(AUC=0.786,χ~2=2.108,P=0.035)and the radiomics model(AUC=0.681,χ~2=2.083,P=0.037),with the sensitivity,specificity and accuracy were 0.838,0.800and 0.827,respectively.The calibration curves showed a good consistency between the predicted and the actual probability in training(χ~2=5.846,P=0.664>0.05)and testing cohort(χ~2= 8.170,P=0.417>0.05).DCA curve showed that the nomogram model had good cli-nical application value.Conclusion:It is feasible to preoperatively predict PNI in patients with AGC using clinic-radiomics nomogram model,which is expected to assist clinicians in optimizing pre-operative decisionmaking. |
来源
|
放射学实践
,2022,37(12):1548-1554 【核心库】
|
DOI
|
10.13609/j.cnki.1000-0313.2022.12.015
|
关键词
|
影像组学
;
神经侵犯
;
进展期胃癌
;
列线图
;
诊断模型
;
体层摄影术,X线计算机
|
地址
|
1.
兰州大学第一临床医学院, 兰州, 730000
2.
兰州大学第一医院放射科, 兰州, 730000
3.
甘肃省智能影像医学工程研究中心, 甘肃省智能影像医学工程研究中心, 兰州, 730000
4.
精准影像协同创新甘肃省国际科技合作基地, 精准影像协同创新甘肃省国际科技合作基地, 兰州, 730000
5.
莆田市第一医院医学影像科, 福建, 351100
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-0313 |
学科
|
肿瘤学;特种医学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7368212
|
参考文献 共
24
共2页
|
1.
Sung H. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36cancers in 185Countries.
CA Cancer J Clin,2021,71(3):209-249
|
CSCD被引
5289
次
|
|
|
|
2.
Chen L. Perineural invasion and postoperative complications are independent predictors of early recurrence and survival following curative resection of gastric cancer.
Cancer Manag Res,2020,12:e7601-e7610.
|
CSCD被引
1
次
|
|
|
|
3.
黄列彬. CT纹理分析联合临床病理信息预测进展期胃癌术后复发的价值.
放射学实践,2022,37(2):214-219
|
CSCD被引
3
次
|
|
|
|
4.
Chen S H. Perineural invasion of cancer:a complex crosstalk between cells and molecules in the perineural niche.
Am J Cancer Res,2019,9(1):1-21
|
CSCD被引
11
次
|
|
|
|
5.
Woodham B L. Prognostic significance of lymphatic,venous and perineural invasion after neoadjuvant chemotherapy in patients with gastric adenocarcinoma.
Ann Surg Oncol,2020,27(9):3296-3304
|
CSCD被引
3
次
|
|
|
|
6.
Aurello P. Influence of perineural invasion in predicting overall survival and disease-free survival in patients with locally advanced gastric cancer.
Am J Surg,2017,213(4):748-753
|
CSCD被引
7
次
|
|
|
|
7.
夏启俊. 胃癌神经侵袭的细胞与分子机制.
中华胃肠外科杂志,2015,18(2):198-200
|
CSCD被引
6
次
|
|
|
|
8.
Yardimci A H. Tubular gastric adenocarcinoma:machine learning-based CT texture analysis for predicting lymphovascular and perineural invasion.
Diagn Interv Radiol,2020,26(6):515-522
|
CSCD被引
4
次
|
|
|
|
9.
Hwang J E. Prognostic significance of the concomitant existence of lymphovascular and perineural invasion in locally advanced gastric cancer patients who underwent curative gastrectomy and adjuvant chemotherapy.
Jpn J Clin Oncol,2015,45(6):541-546
|
CSCD被引
7
次
|
|
|
|
10.
Li J. Integrinβ4is an effective and efficient marker in synchronously highlighting lymphatic and blood vascular invasion,and perineural aggression in malignancy.
Am J Surg Pathol,2020,44(5):681-690
|
CSCD被引
1
次
|
|
|
|
11.
王玉婷. 基于CT动脉晚期特征列线图术前预测胃癌分化程度.
放射学实践,2022,37(3):338-343
|
CSCD被引
3
次
|
|
|
|
12.
Gerke O. Reporting standards for a bland-altman agreement analysis: a review of methodological reviews.
Diagnostics(Basel),2020,10(5):e334
|
CSCD被引
1
次
|
|
|
|
13.
Sun Y K. Prognostic factors associated with locally advanced gastric cancer patients treated with neoadjuvant chemotherapy followed by surgical resection.
Oncotarget,2017,8(43):75186-75194
|
CSCD被引
2
次
|
|
|
|
14.
Blumenthaler A N. Concurrent lymphovascular and perineural invasion after preoperative therapy for gastric adenocarcinoma is associated with decreased survival.
J Surg Oncol,2021,123(4):911-922
|
CSCD被引
1
次
|
|
|
|
15.
Liu J G. Nomogram based on clinical characteristics for preoperative prediction of perineural invasion in gastric cancer.
J Int Med Res,2020,48(1):e0300060519895131
|
CSCD被引
16
次
|
|
|
|
16.
刘书豪. 进展期胃癌神经侵犯列线图预测模型的构建与验证.
中华胃肠外科杂志,2020,23(11):1059-1066
|
CSCD被引
4
次
|
|
|
|
17.
Zhao B C. Perineural invasion as a predictive factor for survival outcome in gastric cancer patients:a systematic review and meta-analysis.
J Clin Pathol,2020,73(9):544-551
|
CSCD被引
5
次
|
|
|
|
18.
Yang K. The impact of nerve involvement on the prognosis of gastric cancer patients with curative gastrectomy:an international multicenter analysis.
Dis Markers,2021,2021(6):e8870562
|
CSCD被引
1
次
|
|
|
|
19.
De Franco L. Prognostic value of perineural invasion in resected gastric cancer patients according to lauren histotype.
Pathol Oncol Res,2018,24(2):393-400
|
CSCD被引
8
次
|
|
|
|
20.
Liang W J. A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors.
Clin Cancer Res,2019,25(2):584-594
|
CSCD被引
14
次
|
|
|
|
|