帮助 关于我们

返回检索结果

一种基于威胁情报层次特征集成的挖矿恶意软件检测方法
Cryptojacking Malware Hunting: A Method Based on Ensemble Learning of Hierarchical Threat Intelligence Feature

查看参考文献22篇

郑锐 1,2   汪秋云 2   林卓庞 2,3   靖蓉琦 2,3   姜政伟 2,3   傅建明 1 *   汪姝玮 2  
文摘 挖矿恶意软件是近年来出现的一种新型恶意软件,其加密运算模式给受害用户带来巨大损失.通过研究挖矿恶意软件的静态特征,本文提出一种基于威胁情报层次特征集成的挖矿恶意软件检测方法.从挖矿恶意软件威胁情报的角度,本文分别使用字节特征层、PE(Portable Executable)结构特征层和挖矿操作执行特征层训练挖矿恶意软件分类器,利用不同恶意软件特征对恶意软件的检测偏好,使用集成方法在层次特征的基础上组建挖矿恶意软件检测器.在实验评估中,本文使用模拟实验室环境数据集和模拟真实世界数据集进行模型性能测试.实验结果表明,本文所设计的层次特征集成的挖矿恶意软件检测方法在模拟真实世界数据集上取得了97.01%的准确率,相对挖矿恶意软件检测基线方法获取了6.13%的准确率提升.
其他语种文摘 Cryptojacking malware is a new type of malware that has emerged in recent years and poses a significant threat to user host security. By studying static features of cryptojacking malware, a detection method is proposed based on integrating hierarchical threat intelligence features. We train cryptojacking malware detectors using the raw byte feature, PE(Portable Executable)parsing feature, and cryptocurrency mining operation feature, respectively. Then, the ensemble learning is used for combining these detectors to form a cryptojacking malware detector from the perspective of hierarchical threat intelligence. In the experiments, the simulated lab dataset and the simulated real-world dataset are used for performance evaluation. The experimental results show that the proposed method acquires 97.01% accuracy rate, which gets improvements of 6.13% relative to the baseline method.
来源 电子学报 ,2022,50(11):2707-2715 【核心库】
DOI 10.12263/DZXB.20211333
关键词 挖矿恶意软件 ; 威胁情报 ; 机器学习 ; 集成学习 ; 深度学习 ; 区块链 ; 操作码特征
地址

1. 武汉大学国家网络安全学院, 空天信息安全与可信计算教育部重点实验室, 湖北, 武汉, 430072  

2. 中国科学院信息工程研究所, 北京, 100093  

3. 中国科学院大学网络空间安全学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  国家重点研发计划
文献收藏号 CSCD:7362394

参考文献 共 22 共2页

1.  Tekiner E. Sok: cryptojacking malware. 2021 IEEE European Symposium on Security and Privacy(EuroS&P),2021:120-139 CSCD被引 2    
2.  Pastrana S. A first look at the crypto-mining malware ecosystem: A decade of unrestricted wealth. Proceedings of the Internet Measurement Conference(IMC),2019:73-86 CSCD被引 1    
3.  安天. 六小时处置挖矿蠕虫的内网大规模感染事件,2019 CSCD被引 1    
4.  Yazdinejad A. Cryptocurrency malware hunting: A deep recurrent neural network approach. Applied Soft Computing,2020,96:106630 CSCD被引 5    
5.  Naseem F. MINOS: a lightweight real-time cryptojacking detection system. Proceedings of the 28th Network and Distributed System Security Symposium,2021:21-25 CSCD被引 1    
6.  Konoth R K. Malicious cryptocurrency miners: Status and outlook,2019 CSCD被引 1    
7.  Kolter J Z. Learning to detect and classify malicious executables in the wild. Journal of Machine Learning Research,2006,7(12):2721-2744 CSCD被引 20    
8.  Nataraj L. Malware images: visualization and automatic classification. Proceedings of the 8th International Symposium on Visualization for Cyber Security,2011:1-7 CSCD被引 33    
9.  Kim J Y. Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders. Information Sciences,2018,460:83-102 CSCD被引 16    
10.  Saxe J. Deep neural network based malware detection using two dimensional binary program features. 2015 10th International Conference on Malicious and Unwanted Software(MALWARE),2015:11-20 CSCD被引 3    
11.  Raff E. Malware detection by eating a whole exe. Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence,2018:268-276 CSCD被引 3    
12.  Raff E. Classifying sequences of extreme length with constant memory applied to malware detection. Proceedings of the AAAI Conference on Artificial Intelligence,2021:9386-9394 CSCD被引 1    
13.  Schultz M G. Data mining methods for detection of new malicious executables. Proceedings 2001 IEEE Symposium on Security and Privacy(S&P),2000:38-49 CSCD被引 1    
14.  Shafiq M Z. Pe-miner: mining structural information to detect malicious executables in realtime. Recent Advances in Intrusion Detection 12th International Symposium(RAID),2009:121-141 CSCD被引 1    
15.  Anderson H S. Ember: an open dataset for training static pe malware machine learning models,2018 CSCD被引 5    
16.  Microsoft Threat Intelligence Center. Threat actor leverages coin miner techniques to stay under the radar-here's how to spot them,2020 CSCD被引 1    
17.  Chan K H R. ReduNet: a whitebox deep network from the principle of maximizing rate reduction,2021 CSCD被引 1    
18.  Van Belle V. Explaining support vector machines: a color based nomogram. PloS ONE,2016,11(10):e0164568 CSCD被引 2    
19.  Kirasich K. Random forest vs logistic regression: binary classification for heterogeneous datasets. SMU Data Science Review,2018,1(3):9 CSCD被引 1    
20.  Aghakhani H. When malware is packin'heat; limits of machine learning classifiers based on static analysis features. 27th Annual Network and Distributed System Security Symposium,2020 CSCD被引 1    
引证文献 3

1 曹传博 面向行为多样期的挖矿恶意软件早期检测方法 电子学报,2023,51(7):1850-1858
CSCD被引 2

2 李国政 TokenVis:面向以太坊区块链ERC-20智能合约演变模式的可视分析方法 电子学报,2024,52(2):441-454
CSCD被引 1

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号