考虑尺寸效应和加载方式的砂岩抗拉强度统计模型
A Statistical Model of Tensile Strength of Sandstone in Consideration of Size Effect and Loading Mode
查看参考文献23篇
文摘
|
针对岩石抗拉强度测试过程中的的尺寸效应问题,设计了3组不同直径(50、75、100 mm)的灰砂岩劈裂试验和一组三点弯试验。基于广义最弱链累积失效概率理论,研究了灰砂岩劈裂抗拉强度在几何相似和非几何相似条件下所测抗拉强度相互转换问题。研究结果表明:①当圆盘试样直径从50 mm增大到100 mm时,对应的劈裂抗拉强度均值逐渐减小,呈现先陡后缓的变化趋势,三点弯法所测抗拉强度均值约为劈裂抗拉度均值的1.18~1.4倍;②使用尺寸效应统计方法建立的灰砂岩试样尺寸效应统计模型,能够在给定失效概率前提下得到不同尺寸下的灰砂岩劈裂抗拉强度。通过近似积分方法计算了劈裂加载方式下的等效强度系数,得到了该加载方式下的等效强度系数计算公式,结合三点弯加载方式下等效强度系数的计算方法,实现了巴西劈裂和三点弯加载方式所测抗拉强度的转换。 |
其他语种文摘
|
In view of the size effect in the process of rock tensile strength testing,we designed three groups of grey sandstone split tests with different diameters (50 mm,75 mm and 100 mm) and a group of three-point bending tests.Based on the theory of cumulative failure probability of generalized weakest chain,we investigated into the mutual conversion of the measured tensile strength of grey sandstone splitting tensile strength under geometrically similar and non-geometrically similar conditions.Results show that:1) When the diameter of disc sample increased from 50 mm to 100 mm,the corresponding average value of split tensile strength gradually decreased in a steep first and then gentle trend.The average tensile strength measured by the three-point bending method is about 1.18-1.4 times of the average split tensile strength.2) The statistical model of grey sandstone established by the size-effect statistical method can obtain the splitting tensile strength of grey sandstone of different sizes under the premise of a given failure probability.Furthermore,we calculated the equivalent strength coefficient under split loading mode by the approximate integration method,and obtained the calculation formula of equivalent strength coefficient.In association with the calculation method of equivalent strength coefficient under the three-point bending loading mode,the conversion of tensile strength measured by Brazilian splitting and three-point bending loading is realized. |
来源
|
长江科学院院报
,2022,39(11):94-101 【核心库】
|
DOI
|
10.11988/ckyyb.20210790
|
关键词
|
灰砂岩
;
抗拉强度
;
尺寸效应
;
加载方式
;
巴西劈裂
;
三点弯
;
统计模型
|
地址
|
1.
中国矿业大学(北京)力学与建筑工程学院, 北京, 100083
2.
中煤第七十一工程处有限责任公司, 安徽, 宿州, 234000
3.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-5485 |
学科
|
建筑科学 |
基金
|
国家自然科学基金项目
;
旧桥检测与加固交通行业重点实验室(北京)开放课题
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:7357276
|
参考文献 共
23
共2页
|
1.
ISRM. Suggested Methodsfor Determining Tensile Strength of Rock Materials.
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15(3):99-103
|
CSCD被引
141
次
|
|
|
|
2.
杨同. 岩石弯曲拉伸试验研究.
勘察科学技术,2004(6):3-5,53
|
CSCD被引
5
次
|
|
|
|
3.
Masoumi H. Scale-size Dependency of Intact Rock under Point-load and Indirect Tensile Brazilian Testing.
Science Letter,2018,15(3):1-15
|
CSCD被引
1
次
|
|
|
|
4.
刘宝琛. 岩石抗压强度的尺寸效应.
岩石力学与工程学报,1998,17(6):611-614
|
CSCD被引
84
次
|
|
|
|
5.
伍法权. 小尺寸岩样单轴压缩试验尺寸效应研究.
岩石力学与工程学报,2021,40(5):865-873
|
CSCD被引
16
次
|
|
|
|
6.
Thuro K. Scale Effects in Rock Strength Properties. Part 1: Unconfined Compressive Test and Brazilian Test.
Rock Mechanics: A Challenge for Society: Proceedings of the ISRM Regional Symposium Eurock 2001,2001:169-174
|
CSCD被引
1
次
|
|
|
|
7.
邓华锋. 圆盘厚径比对岩石劈裂抗拉强度影响的试验研究.
岩石力学与工程学报,2012,31(4):792-798
|
CSCD被引
21
次
|
|
|
|
8.
徐快乐. 砂岩巴西劈裂抗拉强度的尺寸效应研究.
长江科学院院报,2020,37(2):126-129
|
CSCD被引
3
次
|
|
|
|
9.
黄正均. 不同试验方法下岩石抗拉强度及破裂特性.
实验技术与管理,2020,37(10):45-49
|
CSCD被引
2
次
|
|
|
|
10.
Lei W S. A Generalized Weakest-Link Model for Size Effect on Strength of Quasi-brittle Materials.
Journal of Materials Science,2018,53(2):1227-1245
|
CSCD被引
5
次
|
|
|
|
11.
Lei W S. A Framework for Statistical Modeling of Plastic Yielding Initiated Cleavage Fracture of Structural Steels.
Philosophical Magazine,2016,96(35):3586-3631
|
CSCD被引
3
次
|
|
|
|
12.
Lei W S. A Cumulative Failure Probability Model for Cleavage Fracture In Ferritic Steels.
Mechanics of Materials,2016,93:184-198
|
CSCD被引
1
次
|
|
|
|
13.
Lei W S. Fracture Probability of a Randomly Oriented Microcrack under Multi-Axial Loading for the Normal Tensile Stress Criterion.
Theoretical and Applied Fracture Mechanics,2016,85:164-172
|
CSCD被引
1
次
|
|
|
|
14.
Lei W S. Evaluation of the Basic Formulations for the Cumulative Probability of Brittle Fracture with Two Different Spatial Distributions of Microcracks.
Fatigue & Fracture of Engineering Materials & Structures,2016,39(5):611-623
|
CSCD被引
2
次
|
|
|
|
15.
Qian G. Non-proportional Size Scaling of Strength of Concrete in Uniaxial and Biaxial Loading Conditions.
Fatigue & Fracture of Engineering Materials & Structures,2018,41:1733-1745
|
CSCD被引
3
次
|
|
|
|
16.
Weibull W. A Statistical Theory of Strength of Materials.
Generalstabens Litografiska Anstalts Forlag,1939,151:1-45
|
CSCD被引
1
次
|
|
|
|
17.
Weibull W. A Statistical Distribution of Function of Wide Applicability.
Applied Mechanics,1951,18:293-297
|
CSCD被引
302
次
|
|
|
|
18.
Griffith A A. The Phenomena of Rupture and Flow in Solids.
Philosophical Transactions of the Royal Society: Mathematical Physical and Engineering Sciences. A,1920,221(4):163-198
|
CSCD被引
1
次
|
|
|
|
19.
Chau K T. A Three-dimensional Analytic Solution for the Brazilian Test.
Frontiers of Rock Mechanics and Sustainable Development in the 21st Century: Proceedings of the 2001 ISRM International Symposium, the 2nd Asian Rock Mechanics Symposium (ISRM 2001-2nd ARMS),2001:157-160
|
CSCD被引
1
次
|
|
|
|
20.
喻勇. 质疑岩石巴西圆盘拉伸强度试验.
岩石力学与工程学报,2005,24(7):1150-1157
|
CSCD被引
29
次
|
|
|
|
|