基于动态网络的事件风险演变研究
Exploring the Transfer of Event Risk Based on Dynamic Networks
查看参考文献34篇
文摘
|
为了从互联网媒体数据中识别风险事件,描述事件的演化结构和感知事件风险的演化规律,文章基于动态网络事件风险演变分析框架.文章构建时序动态网络表示事件的演化,使用Louvain算法识别事件,使用事件迁移概率构建事件之间的关系图.在识别事件演化结构的基础上,文章确定事件的主要演化路径,归纳出事件风险与事件生命周期之间的关系.研究结果表明,事件的演化存在着事件形成、事件合并和事件衰减等结构,事件演化结构够成了事件发展的主要路径,事件风险在事件生命周期的不同阶段存在差异. |
其他语种文摘
|
In order to identify risk events from Internet media,describe the evolution structures of events and perceive the evolution patterns of event risk,this paper proposes an analysis framework of event risk evolution based on a dynamic network.We construct a time-series network to represent the dynamic development of events,use the Louvain algorithm to identify events,and employ the event transfer metric to construct relation graph between events.Based on the identification of event evolution structure,this paper identifies the main evolutionary paths of events and summarizes the relationship between event risk and event life cycle.The research results show that there are structures of event evolution such as event birth,event merge,and so on.The main paths of event evolution consist of evolution structure.Event risks vary at different stages of the event lifecycle. |
来源
|
系统科学与数学
,2022,42(10):2590-2601 【核心库】
|
DOI
|
10.12341/jssms22497KSS
|
关键词
|
动态网络
;
事件风险
;
社区发现
;
事件演化
|
地址
|
中国科学院数学与系统科学研究院, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0577 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7356057
|
参考文献 共
34
共2页
|
1.
屈晓妍. 互联网使用与公众的社会风险感知.
新闻与传播评论,2011,1:208-220
|
CSCD被引
1
次
|
|
|
|
2.
李燕凌. 公共风险事件中网民风险感知的时空分布:来自H7N9的实证经验.
情报杂志,2020,39(4):117-126
|
CSCD被引
2
次
|
|
|
|
3.
Allan J.
Topic Detection and Tracking,2002
|
CSCD被引
3
次
|
|
|
|
4.
闫志华. 融合高效用模式的在线媒体突发话题发现.
系统工程理论与实践,2021,41(5):1138-1149
|
CSCD被引
3
次
|
|
|
|
5.
Cai H. Indexing evolving events from tweet streams.
IEEE Transactions on Knowledge and Data Engineering,2015,27(11):3001-3015
|
CSCD被引
4
次
|
|
|
|
6.
曹丽娜. 基于主题模型的BBS话题演化趋势分析.
管理科学学报,2014,17(11):109-121
|
CSCD被引
19
次
|
|
|
|
7.
Mao Q. Event prediction based on evolutionary event ontology knowledge.
Future Generation Computer Systems,2021(115):76-89
|
CSCD被引
8
次
|
|
|
|
8.
Ozdikis O. Incremental clustering with vector expansion for online event detection in microblogs.
Social Network Analysis and Mining,2017,7(1):1-17
|
CSCD被引
1
次
|
|
|
|
9.
刘晓娟. 基于政务微博的信息公开与舆情演化研究——以新冠肺炎病例信息为例.
情报理论与实践,2021,44(2):57-63
|
CSCD被引
3
次
|
|
|
|
10.
Rule A. Lexical shifts, substantive changes, and continuity in State of the Union discourse, 1790-2014.
Proceedings of the National Academy of Sciences,2015,112(35):10837-10844
|
CSCD被引
4
次
|
|
|
|
11.
Chen C. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis.
Journal of the American Society for Information Science and Technology,2010,61(7):1386-1409
|
CSCD被引
117
次
|
|
|
|
12.
Leydesdorff L. Co-word maps and topic modeling: A comparison using small and medium-sized corpora (N < 1,000).
Journal of the Association for Information Science and Technology,2017,68(4):1024-1035
|
CSCD被引
3
次
|
|
|
|
13.
Blei D M. Dynamic topic models.
The 23rd International Conference on Machine Learning,2006:113-120
|
CSCD被引
1
次
|
|
|
|
14.
Wang X. Topics over time: A non-Markov continuous-time model of topical trends.
The 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2006:424-433
|
CSCD被引
1
次
|
|
|
|
15.
Du Y J. Extracting and tracking hot topics of micro-blogs based on improved Latent Dirichlet Allocation.
Engineering Applications of Artificial Intelligence,2020(87):103279
|
CSCD被引
5
次
|
|
|
|
16.
Fu X. Dynamic online HDP model for discovering evolutionary topics from Chinese social texts.
Neurocomputing,2016(171):412-424
|
CSCD被引
5
次
|
|
|
|
17.
Iwata T. Online multiscale dynamic topic models.
The 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2010:663-672
|
CSCD被引
1
次
|
|
|
|
18.
Keith N B F. Narrative maps: An algorithmic approach to represent and extract information narratives.
Proceedings of the ACM on Human-Computer Interaction,2021,4:1-33
|
CSCD被引
1
次
|
|
|
|
19.
Xuan J. Web event evolution trend prediction based on its computational social context.
World Wide Web,2020,23(3):1861-1886
|
CSCD被引
2
次
|
|
|
|
20.
Liu Y. Event detection and evolution in multi-lingual social streams.
Frontiers of Computer Science,2020,14(5):1-15
|
CSCD被引
3
次
|
|
|
|
|