高分辨率长时间序列的中国岩石化学风化碳汇数据及其变化趋势
High-Resolution Long-Term Data of China's Rock Weathering Carbon Sink and Its Spatial-Temporal Pattern
查看参考文献46篇
文摘
|
中国岩石化学风化碳汇(RCS)在碳循环中极其重要,然而,中国2000—2020年RCS的时空格局和演变趋势尚未得到系统量化。本研究依据水文气象数据和RCS计算模型,对中国RCS的量级和时空格局进行了系统量化研究。结果表明,中国RCS通量(RCSF)和年均总量(FRCS)分别为3.46 t/(km~2·a)和17.32 Tg/a,并随纬度的升高而逐渐降低,主要集中在西南八省和胡焕庸线以南。其中,贵州省的RCSF[11.79 t/(km~2·a)]远高于其他省份,但总量却低于广西壮族自治区(0.21 Tg/a),而北京市和上海市的碳汇比重不足1%。中国RCS在研究期间整体处于波动式增加状态,增长速率为2.76 kg/km~2,至2020年,RCSF和FRCS分别增加了0.31 t/(km~2·a)和2.11 Tg/a。本文构建了一套中国高分辨率RCS数据集,可为中国碳中和目标的实现提供数据支撑。 |
其他语种文摘
|
Rock weathering Carbon Sink (RCS) is extremely important in the carbon cycle. However, the spatial-temporal pattern of China’s RCS and its changing trend from 2000 to 2020 have not been quantified. This study systematically quantified the magnitude and the spatial-temporal pattern of RCS in China with the support of hydro-meteorological data and RCS computational models. Our findings are as follows. First, the RCS Flux (RCSF) and the Full RCS (FRCS) of China were 3.46 t/(km~2·a) and 17.32 Tg/a, respectively. RCS not only gradually decreased with the increase of latitude, but also mainly concentrated in the eight southwestern provinces and south of the Hu Line. Furthermore, RCSF of Guizhou (11.79 t/(km~2·a)) was much higher than that of other provinces, but FRCS of Guizhou was lower than that of Guangxi (0.21 Tg/a). Moreover, FRCS in Beijing and Shanghai accounted for less than 1% of China's carbon sink. Finally, China's RCS was in a fluctuating increase overall during the study period with a growth rate of 2.76 kg/km~2, and by 2020, China's RCSF and FRCS increased by 0.31 t/(km~2·a) and 2.11 Tg/a, respectively. This study provides a high-resolution RCS dataset to support China’s achievement of carbon neutrality. |
来源
|
矿物岩石地球化学通报
,2022,41(5):956-964 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2022.41.069
|
关键词
|
岩石
;
化学风化
;
碳汇
;
碳循环
;
时空格局
;
中国
|
地址
|
1.
贵州师范大学地理与环境科学学院, 贵阳, 550001
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
3.
中国科学院第四纪科学与全球变化卓越创新中心, 中国科学院第四纪科学与全球变化卓越创新中心, 西安, 710061
4.
贵州省流域地理国情监测重点实验室, 贵州省流域地理国情监测重点实验室, 贵阳, 550018
5.
贵州大学资源与环境工程学院, 贵阳, 550025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
自然地理学 |
基金
|
中国科学院战略性先导专项(B类)子课题
;
中国科学院“西部之光”交叉团队项目
;
中国科学院贵阳地球化学研究所环境地球化学国家重点实验室基金
|
文献收藏号
|
CSCD:7351744
|
参考文献 共
46
共3页
|
1.
Beck H E. Present and future Koppen-Geiger climate classification maps at 1-km resolution.
Scientific Data,2018,5:180214
|
CSCD被引
52
次
|
|
|
|
2.
Berner R A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O_2 and CO_2.
Geochimica et Cosmochimica Acta,2006,70(23):5653-5664
|
CSCD被引
76
次
|
|
|
|
3.
Borker J. Chemical weathering of loess and its contribution to global alkalinity fluxes to the coastal zone during the Last Glacial Maximum, Mid-Holocene, and Present.
Geochemistry, Geophysics, Geosystems,2020,21(7):e2020GC008922
|
CSCD被引
3
次
|
|
|
|
4.
Ciais P. Carbon and other biogeochemical cycles.
The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Change,2013:465-570
|
CSCD被引
1
次
|
|
|
|
5.
Fan B L. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream.
Journal of Asian Earth Sciences,2014,96:17-26
|
CSCD被引
58
次
|
|
|
|
6.
Gaillardet J. Global silicate weathering and CO_2 consumption rates deduced from the chemistry of large rivers.
Chemical Geology,1999,159(1/4):3-30
|
CSCD被引
373
次
|
|
|
|
7.
Gombert P. Role of karstic dissolution in global carbon cycle.
Global and Planetary Change,2002,33(1/2):177-184
|
CSCD被引
41
次
|
|
|
|
8.
Gong S H. Response of the weathering carbon sink in terrestrial rocks to climate variables and ecological restoration in China.
Science of the Total Environment,2021,750:141525
|
CSCD被引
11
次
|
|
|
|
9.
Hartmann J. Global CO_2-consumption by chemical weathering: What is the contribution of highly active weathering regions.
Global and Planetary Change,2009,69(4):185-194
|
CSCD被引
35
次
|
|
|
|
10.
Hartmann J. The new global lithological map database GLiM: A representation of rock properties at the Earth surface.
Geochemistry, Geophysics, Geosystems,2012,13(12):Q12004
|
CSCD被引
23
次
|
|
|
|
11.
Hartmann J. Global chemical weathering and associated P-release-the role of lithology, temperature and soil properties.
Chemical Geology,2014,363:145-163
|
CSCD被引
16
次
|
|
|
|
12.
Hilley G E. A framework for predicting global silicate weathering and CO_2 drawdown rates over geologic time-scales.
Proceedings of the National Academy of Sciences of the United States of America,2008,105(44):16855-16859
|
CSCD被引
9
次
|
|
|
|
13.
Li C J. High-resolution mapping of the global silicate weathering carbon sink and its long-term changes.
Global Change Biology,2022,28(14):4377-4394
|
CSCD被引
10
次
|
|
|
|
14.
Liu Z. Contribution of carbonate rock weathering to the atmospheric CO_2 sink.
Environmental Geology,2000,39(9):1053-1058
|
CSCD被引
71
次
|
|
|
|
15.
Liu Z H. A new direction in effective accounting for the atmospheric CO_2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms.
Earth-Science Reviews,2010,99(3/4):162-172
|
CSCD被引
160
次
|
|
|
|
16.
Liu Z H. Atmospheric CO_2 sink: Silicate weathering or carbonate weathering?.
Applied Geochemistry,2011,26(S1):S292-S294
|
CSCD被引
52
次
|
|
|
|
17.
Liu Z H. Large and active CO_2 uptake by coupled carbonate weathering.
Earth-Science Reviews,2018,182:42-49
|
CSCD被引
65
次
|
|
|
|
18.
Luo X L. Particulate organic carbon exports from the terrestrial biosphere controlled by erosion.
CATENA,2022,209:105815
|
CSCD被引
4
次
|
|
|
|
19.
Martin J B. Carbonate minerals in the global carbon cycle.
Chemical Geology,2017,449:58-72
|
CSCD被引
28
次
|
|
|
|
20.
Moon S. New estimates of silicate weathering rates and their uncertainties in global rivers.
Geochimica et Cosmochimica Acta,2014,134:257-274
|
CSCD被引
27
次
|
|
|
|
|