GDY/HMX复合含能材料的热分解动力学和机理
Thermal Decomposition Kinetics and Mechanism of GDY/HMX Composite Energetic Materials
查看参考文献40篇
文摘
|
为探讨石墨二炔(GDY)对环四亚甲基四硝胺(HMX)热分解特性的影响,制备了GDY/HMX(质量比1∶4)含能复合物,运用差示扫描量热法(DSC)和热重-红外-质谱联用技术(TG/DTG-FTIR-MS)对比研究了HMX和GDY/HMX的热分解过程;采用Kissinger法、FWO法、KAS法、Starink法、Kissinger-迭代法及Ozawa-迭代法计算HMX和GDY/HMX的表观活化能,并引入修正后的Sestak-Berggren经验方程对其热分解反应动力学模型进行重建。结果表明,GDY使HMX的表观活化能降低73.6 kJ/mol。GDY/HMX复合物的热分解过程遵循n级动力学方程f (α)= 3.04α~(0.39)(1-α)~(1.17);在GDY催化作用下,HMX热分解以C-N键断裂为主,首先释放出C_2HO和N_2O,还检测到NO、NO_2、HCN、CO、N_2、HCNO、CO_2和H_2O气体。 |
其他语种文摘
|
To explore the effect of graphdiyne(GDY)on the thermal decomposition characteristics of HMX,the GDY/HMX(mass ratio of 1∶4)composite energetic materials was prepared,and the differential scanning calorimetry(DSC)and the thermogravimetry coupled with Fourier transform infrared spectrometry and mass spectrometry(TG/DTG-FTIR-MS)technique were employed to investigate the pyrolysis processes of the HMX and GDY/HMX comparatively.The apparent activation energies of HMX and GDY/HMX were calculated by Kissinger,FWO,KAS,Starink,Kissinger-iterative,and Ozawa-iterative methods,and the modified Sestak-Berggren empirical equation was used to reconstruct the kinetic models of their thermal decomposition reactions.The results show that the apparent activation energy of HMX is reduced by 73.6 kJ/mol in the presence of GDY.The pyrolysis process of the GDY/HMX composite follows the n-order kinetic equation f(α)=3.04α~(0.39)(1-α)~(1.17).GDY plays a crucial role in promoting the C-N bond cleavage during HMX decomposition,leading to the release firstly of the C_2HO and N_2O.And the gaseous products including NO,NO_2,HCN,CO,N_2,HCNO,CO_2,and H_2O are also detected. |
来源
|
火炸药学报
,2022,45(5):679-687 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.202204026
|
关键词
|
物理化学
;
石墨二炔
;
GDY
;
热分解动力学
;
催化活性
;
TG/DTG-FTIR-MS
|
地址
|
1.
西安理工大学理学院, 陕西, 西安, 710054
2.
西北大学化工学院, 陕西, 西安, 710069
3.
西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西, 西安, 710065
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-7812 |
学科
|
化学;武器工业 |
基金
|
国家自然科学基金
;
陕西省自然科学基础研究计划资助项目
;
陕西省教育厅项目
;
西安理工大学博士科研启动基金
|
文献收藏号
|
CSCD:7341591
|
参考文献 共
40
共2页
|
1.
Meyer R.
Explosives,2016
|
CSCD被引
6
次
|
|
|
|
2.
Elbasuney S. Ferric oxide colloid:novel nanocatalyst for heterocyclic nitramines.
Journal of Materials Science:Materials in Electronics,2021,32:4185-4195
|
CSCD被引
2
次
|
|
|
|
3.
Elbasuney S. The significant impact colloidal nanothermite particles (Fe_2O_3/Al)on HMX kinetic decomposition.
Journal of Energetic Materials,2021,11:1-16
|
CSCD被引
3
次
|
|
|
|
4.
Elbasuney S. Synergistic catalytic effect of thermite nanoparticles on HMX thermal decomposition.
Journal of Inorganic and Organometallic Polymers and Materials,2021,31(6):2293-2305
|
CSCD被引
2
次
|
|
|
|
5.
Song N. Preparation of microspherical ph-Fe/RDX (HMX)composite particles and their thermal decomposition behaviors.
Propellants,Explosives,Pyrotechnics,2021,46(5):690-696
|
CSCD被引
3
次
|
|
|
|
6.
Zhang T. The effect of LaFeO_3@ MNO_2 on the thermal behavior of energetic compounds:an efficient catalyst with core-shell structure.
Advanced Powder Technology,2020,31(11):4510-4516
|
CSCD被引
4
次
|
|
|
|
7.
Wang J. In situ synthesis of MgWO_4-GO nanocomposites and their catalytic effect on the thermal decomposition of HMX,RDX and AP.
Carbon Letters,2020,30:425-434
|
CSCD被引
7
次
|
|
|
|
8.
He Q. Fabrication of gradient structured HMX/Al and its combustion performance.
Combustion and Flame,2021,226:222-228
|
CSCD被引
7
次
|
|
|
|
9.
曾贵玉. 碳纳米管对HMX热分解行为的影响.
火炸药学报,2012,35(6):55-57
|
CSCD被引
6
次
|
|
|
|
10.
Wang J. Preparation and properties of surface-coated HMX with viton and graphene oxide.
Journal of Energetic Materials,2016,34(3):235-245
|
CSCD被引
15
次
|
|
|
|
11.
Liu T. Encapsulation of cyclotetramethylenetetranitramine (HMX)by electrostatically self-assembled graphene oxide for desensitization.
Propellants, Explosives,Pyrotechnics,2017,42(9):1057-1065
|
CSCD被引
6
次
|
|
|
|
12.
Li G. Architecture of graphdiyne nanoscale films.
Chemical Communications,2010,46:3256-3258
|
CSCD被引
252
次
|
|
|
|
13.
Li Y. Graphdiyne visible-light photodetector with ultrafast detectivity.
Advanced Optical Materials,2021,9:2001916
|
CSCD被引
2
次
|
|
|
|
14.
Liu Y X. Graphdiyne ultrathin nanosheets for efficient water splitting.
Advanced Functional Materials,2021,31:2010112
|
CSCD被引
1
次
|
|
|
|
15.
Song B. Using graphdiyne (GDY)as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production:a review.
Journal of Hazardous Materials,2020,398:122957
|
CSCD被引
12
次
|
|
|
|
16.
Qi Q. Fabrication and Application of Graphdiyne-based Heterogeneous Compositions:from the View of Interaction.
Chemical Research in Chinese Universities,2021,37:1158-1175
|
CSCD被引
6
次
|
|
|
|
17.
Hu Y. Recent advances in two-dimensional graphdiyne for nanophotonic applications.
Chemical Engineering Journal,2022,450:138228
|
CSCD被引
2
次
|
|
|
|
18.
Yang Z. Investigating graphdiyne based materials for rechargeable batteries.
Nano Today,2022,46:101588
|
CSCD被引
3
次
|
|
|
|
19.
曾见有. 石墨双炔/RDX复合物的热分解性能.
火炸药学报,2021,44(4):474-483
|
CSCD被引
5
次
|
|
|
|
20.
Zhao N. Studies on thermokinetic and reactive mechanism of graphdiyne-based NC composite via multi isoconversional methods and model reconstruction.
Cellulose,2022,29:4365-4379
|
CSCD被引
2
次
|
|
|
|
|