PEO基固态聚合物电解质膜的静电纺丝制备及性能
Preparation and properties of solid polymer electrolyte membranes based on PEO by electrospinning
查看参考文献26篇
文摘
|
PEO基固态聚合物电解质被认为是目前固态锂电池领域极具产业化前景的固态电解质。为适应工业化生产,采用静电纺丝技术制备PEO/LiClO_4固态聚合物电解质(SPE),研究纺丝电压、纺丝液质量浓度和锂盐含量对SPE纤维膜形貌和直径的影响。通过扫描电子显微镜观察SPE中纤维的形貌,利用Image J软件分析SPE纤维的直径。通过DSC, XRD,FTIR-ATR和拉伸测试等手段对静电纺丝制备的SPE纤维膜的组成、结构、性能等进行研究。结果表明:当纺丝电压为15kV、PEO/LiClO_4纺丝液质量浓度为6%、[EO]∶[Li+]=10∶1(摩尔比)时,静电纺丝方法制备的PEO/LiClO_4SPE纤维膜具有较好的纤维形貌,平均直径为557nm,分布均一;当[EO]∶[Li+]=10∶1时,SPE纤维膜中PEO的熔点仅为53.8℃,结晶度低至18.9%;电解质在30℃时的离子电导率达到5.16×10~(-5) S·cm~(-1),同时具备良好的电化学稳定性和界面稳定性。 |
其他语种文摘
|
PEO-based solid polymer electrolytes are considered as a promising solid electrolyte in the field of solid-state lithium batteries.PEO/LiClO_4 solid polymer electrolyte(SPE)was prepared through electrostatic spinning technology,in order to meet the demand of industrial production.The effects of spinning voltage,spinning solution concentration and lithium salt content on the morphology and diameter of the fiber were studied.The morphology of SPE fiber was observed by scanning electron microscope and the diameter of SPE fiber was analysed by Image J.Furthermore,the composition,structure and properties of solid polymer electrolyte fiber membranes prepared by electrospinning were studied by DSC,XRD,FTIR-ATR and tensile testing.The results show that the PEO/LiClO_4solid polymer electrolyte membrane prepared by electrostatic spinning method has good fiber morphology,when the spinning voltage is 15kV,and the concentration of PEO/LiClO_4spinning solution is 6%,and the molar ratio([EO]∶[Li+])is 10∶1.Meanwhile,the average diameter of the fibers is 557nm,giving relatively uniform distribution.When[EO]∶[Li+]=10∶1,the melting point of PEO in the SPE fiber membrane is only 53.8℃,with the crystallinity as low as 18.9%.And the ionic conductivity of the prepared SPE exhibits as high as 5.16×10~(-5) S·cm~(-1) at 30℃.Moreover,the prepared electrospun SPE has good electrochemical stability and interfacial stability. |
来源
|
材料工程
,2022,50(10):148-156 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001125
|
关键词
|
固态聚合物电解质
;
聚氧化乙烯
;
静电纺丝
;
纤维
;
离子电导率
|
地址
|
1.
西安工业大学材料与化工学院, 西安, 710021
2.
北京泰德制药股份有限公司, 北京, 100176
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
陕西省自然科学基金面上项目
;
陕西省自然科学基金-企业-陕煤联合项目
|
文献收藏号
|
CSCD:7340283
|
参考文献 共
26
共2页
|
1.
Wang Y. Carbon coated halloysite nanotubes as efficient sulfur host materials for lithium sulfur batteries.
Applied Clay Science,2019,179(10):105172-105179
|
CSCD被引
3
次
|
|
|
|
2.
Navarram A. Gel polymer electrolytes based on silica-added poly(ethylene oxide)electrospun membranes for lithium batteries.
Membranes,2018,8(4):126
|
CSCD被引
1
次
|
|
|
|
3.
Ji U C. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries:yesterday,today,and tomorrow.
Advanced Energy Materials,2020,10(42):121-134
|
CSCD被引
34
次
|
|
|
|
4.
吴浩. 水铝英石/PEO/LiClO_4复合固态聚合物电解质中组分相互作用对PEO结晶的影响.
材料工程,2021,49(1):35-43
|
CSCD被引
2
次
|
|
|
|
5.
Goodenough J B. The Li-ion rechargeable battery: aperspective.
Journal of the American Chemical Society,2013,135(4):1167-1176
|
CSCD被引
594
次
|
|
|
|
6.
Banitaba S N. A comparative analysis on the morphology and electrochemical performances of solution-casted and electrospun PEO-based electrolytes:the effect of fiber diameter and surface density.
Electrochimica Acta,2021,368:137339
|
CSCD被引
2
次
|
|
|
|
7.
Zhang S S. Liquid electrolyte lithium/sulfur battery:fundamental chemistry,problems,and solutions.
Journal of Power Sources,2013,231(1):153-162
|
CSCD被引
113
次
|
|
|
|
8.
Wang M. Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries.
Journal of Energy Chemistry,2021,6(10):78-85
|
CSCD被引
1
次
|
|
|
|
9.
Kim H H. Effect of fiber diameter on surface morphology mechanical property and cell behavior of electrospun poly(ε-caprolactone)mat.
Fibers and Polymers,2016,17(7):1033-1042
|
CSCD被引
2
次
|
|
|
|
10.
Shriver D F. Mechanism of ion conduction in alkali metal-polymer complexes.
Journal of Power Sources,1983,9(3):383-388
|
CSCD被引
1
次
|
|
|
|
11.
Janakiraman S. High performance electrospun nanofiber coated polypropylene membrane as a separator for sodium ion batteries.
Journal of Power Sources,2020,460:228060
|
CSCD被引
5
次
|
|
|
|
12.
Raghavan P. Electrospun polymer nanofibers:the booming cutting edge technology.
Reactive and Functional Polymers,2012,72(12):915-930
|
CSCD被引
6
次
|
|
|
|
13.
Zhao S. An all-nanofiber-based ultralight stretchable triboelectric nanogenerator for self-powered wearable electronics.
Applied Energy Materials,2018,17:439-448
|
CSCD被引
1
次
|
|
|
|
14.
Lee J. Free-standing PEO/LiTFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries.
Journal of the Electrochemical Society,2019,166(2):416-422
|
CSCD被引
1
次
|
|
|
|
15.
Walke P. Electrospun Li(TFSI)@polyethylene oxide membranes as solid electrolytes.
Journal of Inorganic and General Chemistry,2018,644(24):1863-1874
|
CSCD被引
2
次
|
|
|
|
16.
Zhang Z. MOF-derived ionic conductor enhancing polymer electrolytes with superior electrochemical performances for all solid lithium metal batteries.
Journal of Membrane Science,2020,598:117800-117812
|
CSCD被引
7
次
|
|
|
|
17.
Zong X. Structure and process relationship of electrospun bioabsorbable nanofiber membranes.
Polymer,2002,43(16):4403-4412
|
CSCD被引
79
次
|
|
|
|
18.
Wang C. Favorable electrochemical performance of LiMn_2O_4/LiFePO_4composite electrodes attributed to composite solid electrolytes for all-solid-state lithium batteries.
Langmuir,2021,37(7):2349-2354
|
CSCD被引
1
次
|
|
|
|
19.
Koski A. Effect of molecular weight on fibrous PVA produced by electrospinning.
Materials Letters,2004,58(3):493-497
|
CSCD被引
49
次
|
|
|
|
20.
Doshi J. Electrospinning process and applications of electrospun fibers.
Journal of Electrostatics,1995,35(2):151-160
|
CSCD被引
108
次
|
|
|
|
|