氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响
Effect of oxygen plasma treatment on surface performance and mechanical properties of bonding interface of CFRP
查看参考文献29篇
文摘
|
为改善碳纤维增强复合材料(CFRP)胶接界面力学性能,采用低温氧气等离子体处理设备对CFRP进行表面处理。利用接触角测量仪、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)对CFRP表面润湿性、表面能、表面形貌、表面化学组分等进行表征,通过双悬臂梁实验(DCB)对CFRP胶接界面力学性能进行研究。结果表明:随氧气等离子体处理时间从0s增加至30s,表面水接触角从97°降至29°,CFRP表面润湿性达到最佳,极性分量占比显著增多;随处理时间的增加,CFRP表面粗糙度和最大高低差降低,形成较多谷峰分布的纳米级沟壑,基体表面积增大;同时,表面C—O和C =O等含氧极性官能团含量明显增加,C—C/C—H和Si—C官能团含量减少,表面污染物得到有效清除和转化;与未处理相比,经氧气等离子体处理20s后,CFRP胶接界面最大剥离载荷和Ⅰ型断裂韧度分别提高了1.01倍(62.73N)和1.92倍(649.21J/m~2)。研究发现,氧气等离子体处理可以显著改善CFRP表面物理化学特性,有利于CFRP与胶黏剂更好的黏结,提高胶接界面剥离强度与韧性。 |
其他语种文摘
|
To improve the mechanical properties of carbon fiber reinforced polymer(CFRP)bonding interface,the surface treatment of CFRP was performed using low-temperature oxygen plasma treatment equipment.The surface physico-chemical properties including surface wettability,surface energy,surface morphology and surface chemical components of CFRP were characterized by contact angle measurement,scanning electron microscopy(SEM),atomic force microscopy(AFM)and X-ray photoelectron spectroscopy (XPS)test equipment,as well as the mechanical properties of CFRP bonding interface was tested by double cantilever beam (DCB)test.The results show that the water contact angle of surface decreases from 97°to 29°with the increase of oxygen plasma treatment time from 0sto 30s,as well as the surface wettability of CFRP is the best and the percentage of polar components increases significantly.As the increase of treatment time,the surface roughness and the maximum height difference of CFRP decrease significantly,and more nanoscale grooves with valley distribution are formed and thus the surface area of substrate increases.Meanwhile,the content of oxygen-containing polar functional groups including C—O and C =O on the surface are increased obviously,the content of C—C/C—H and Si—C functional groups are decreased,and the surface contaminants are effectively removed or transformed.In comparison with the untreated specimens, the maximum peeling load and modeⅠfracture toughness of CFRP adhesive interface are improved by 1.01times (62.73N)and 1.92times(649.21J/m~2)after oxygen plasma treatment for 20s, respectively.The study reveals that oxygen plasma treatment can significantly improve the physicochemical properties of CFRP surface,which is conducive to better bonding between CFRP and adhesive,and improve the peel strength and toughness of the adhesive interface. |
来源
|
材料工程
,2022,50(10):118-127 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001153
|
关键词
|
CFRP
;
胶接
;
表面改性
;
氧气等离子体处理
;
表面特性
;
断裂韧度
|
地址
|
1.
中国民航大学航空工程学院, 天津, 300300
2.
中国民航大学安全科学与工程学院, 天津, 300300
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7340280
|
参考文献 共
29
共2页
|
1.
邢丽英. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战.
复合材料学报,2020,37(11):2700-2706
|
CSCD被引
29
次
|
|
|
|
2.
包建文. 航空碳纤维树脂基复合材料的发展现状和趋势.
科技导报,2018,36(19):52-63
|
CSCD被引
42
次
|
|
|
|
3.
李威. 碳纤维复合材料在航天领域的应用.
中国光学,2011,16(3):201-212
|
CSCD被引
82
次
|
|
|
|
4.
乔海涛. 先进复合材料结构胶接体系的研发与应用.
材料工程,2018,46(12):38-47
|
CSCD被引
18
次
|
|
|
|
5.
周利. 热塑性树脂基复合材料连接技术的研究进展.
材料导报,2019,33(19):3177-3183
|
CSCD被引
19
次
|
|
|
|
6.
孙振起. 先进复合材料在飞机结构中的应用.
材料导报,2015,29(11):61-64
|
CSCD被引
24
次
|
|
|
|
7.
李永兵. 轻量化薄壁结构点连接技术研究进展.
机械工程学报,2020,56(6):125-146
|
CSCD被引
39
次
|
|
|
|
8.
李智. 胶接接头界面理论及其表面处理技术研究进展.
材料导报,2006,20(10):48-51
|
CSCD被引
19
次
|
|
|
|
9.
Qin G. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive CFRP and adhesively bonded CFRP-aluminum alloy joints.
Composites: Part B,2018,154:43-55
|
CSCD被引
9
次
|
|
|
|
10.
Martinez L V H. Studies on the influence of surface treatment type in the effectiveness of structural adhesive bonding for carbon fiber reinforced composites.
Journal of Manufacturing Processes,2019,39:160-166
|
CSCD被引
1
次
|
|
|
|
11.
De L P S. Etching of carbon fiber-reinforced plastics to increase their joint strength.
Journal of Materials Engineering and Performance,2020,29(1):242-250
|
CSCD被引
1
次
|
|
|
|
12.
See T L. Laser abrading of carbon fibre reinforced composite for improving paint adhesion.
Applied Physics A,2014,117(3):1045-1054
|
CSCD被引
6
次
|
|
|
|
13.
Sun C. Effect of atmospheric pressure plasma treatment on adhesive bonding of carbon fiber reinforced polymer.
Polymers,2019,11(1):139
|
CSCD被引
9
次
|
|
|
|
14.
Encinas N. Surface modification of aircraft used composites for adhesive bonding.
International Journal of Adhesion and Adhesives,2014,50:157-163
|
CSCD被引
7
次
|
|
|
|
15.
张海宝. 非热等离子体材料表面处理及功能化研究进展.
物理学报,2021,70(9):22-38
|
CSCD被引
4
次
|
|
|
|
16.
翟全胜. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能.
复合材料学报,2021,38(7):2162-2171
|
CSCD被引
8
次
|
|
|
|
17.
Zia A W. Effect of physical and chemical plasma etching on surface wettability of carbon fiber-reinforced polymer composites for bone plate applications.
Advances in Polymer Technology,2015,34(1):21480
|
CSCD被引
1
次
|
|
|
|
18.
Kim J. Mechanism study of atmospheric-pressure plasma treatment of carbon fiber reinforced polymers for adhesion improvement.
Surface and Coatings Technology,2020,393:125841
|
CSCD被引
2
次
|
|
|
|
19.
Pizzorni M. Low-pressure plasma treatment of CFRP substrates for epoxy-adhesive bonding: an investigation of the effect of various process gases.
The International Journal of Advanced Manufacturing Technology,2019,102(9):3021-3035
|
CSCD被引
2
次
|
|
|
|
20.
Than E. On the relations between atomic interface parameters and the wettability and stability in metal-ceramic systems.
Vacuum,1990,41(7):1750-1752
|
CSCD被引
3
次
|
|
|
|
|