Y~(3+)掺杂Li_4Ti_5O_(12)负极材料的电荷输运特性及电化学性能研究
Transport characteristics and electrochemical properties of Y~(3+)doped Li_4Ti_5O_(12)as anode material
查看参考文献30篇
文摘
|
以Li_2CO_3与锐钛矿型TiO_2为原料,六水合硝酸钇(Y(NO_3)_3·6H_2O)为钇源,采用球磨辅助固相法合成了Li_4Ti_(5-x)Y_xO_(12)(x=0,0.05,0.10,0.15,0.20)负极材料。通过X射线衍射分析(XRD)、扫描电镜(SEM)、能谱仪(EDS)与X射线光电子能谱(XPS)分别对材料的物相与形貌进行表征分析,并利用电化学工作站对材料的电化学性能与电荷输运特性进行测试。结果表明,Y~(3+)掺杂没有影响尖晶石型Li_4Ti_5O_(12)(LTO)材料的尖晶石结构,x=0.15时,Li_4Ti_(4.85)Y_(0.15)O_(12)样品的离子与电子电导率分别为2.68×10~(-7) S·cm~(-1)和1.49×10-9 S·cm~(-1),比本征材料提升了1个数量级,表现出良好的电荷输运特性。电化学测试表明,Li_4Ti_(4.85)Y_(0.15)O_(12)样品在0.1C倍率首次放电比容量可达171mAh·g~(-1),且在10C与20C高倍率下仍然拥有102mAh·g~(-1)和79mAh·g~(-1)的较高比容量,循环200周次后容量保持率分别为92.6%和89.1%,表现出良好的倍率特性。 |
其他语种文摘
|
Li_4Ti_(5-x)Y_xO_(12)(x=0,0.05,0.10,0.15,0.20)anode materials were synthesized by ball milling assisted solid-state method used Li_2CO_3and anatase TiO_2as raw materials and yttrium nitrate (Y(NO_3)_3·6H_2O)as yttrium source.The phase and morphology of the materials were characterized by X-ray diffraction(XRD),scanning electron microscopy (SEM),energy dispersive spectroscopy (EDS)and X-ray photoelectron spectroscopy(XPS),respectively.The electrochemical performance and transport characteristics of the materials were tested and analyzed by an electrochemical workstation.The results show that there is no effect of Y~(3+) doping on the spinel structure of LTO material.When x=0.15,the ion and electronic conductivities of the Li_4Ti_(4.85)Y_(0.15)O_(12)sample are 2.68×10~(-7) S·cm~(-1) and 1.49×10-9 S·cm~(-1),respectively,which are an order of magnitude higher than that of the intrinsic LTO,and present good transport characteristics.Electrochemical tests show that a first discharge capacity of Li_4Ti_(4.85)Y_(0.15)O_(12)sample can reach 171mAh·g~(-1) at 0.1Crate.The sample still has a higher specific capacity of 102mAh·g~(-1) and 79mAh·g~(-1) at a high rate of 10Cand 20C, respectively.After 200cycles,the capacity retention rates are 92.6%and 89.1%respectively,showing good magnification characteristics. |
来源
|
材料工程
,2022,50(10):102-110 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000209
|
关键词
|
掺杂
;
钛酸锂
;
电导率
;
稀土离子
;
高倍率
|
地址
|
1.
河北大学电子信息工程学院, 河北省类脑神经器件与系统重点实验室, 河北, 保定, 071002
2.
国网河北省电力有限公司电力科学研究院, 石家庄, 050021
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
天津市重点研究开发项目
;
河北省自然科学基金
|
文献收藏号
|
CSCD:7340278
|
参考文献 共
30
共2页
|
1.
Prosini P P. Li_4Ti_5O_(12)as anode in all-solid-state,plastic,lithium-ion batteries for low-power applications.
Solid State Ionics,2001,144(1/2):185-192
|
CSCD被引
51
次
|
|
|
|
2.
Hu X. Influence factors on electrochemical properties of Li_4Ti_5O_(12)/C anode material pyrolyzed from lithium polyacrylate.
Journal of Alloys and Compounds,2010,506(1):160-166
|
CSCD被引
1
次
|
|
|
|
3.
Ronci F. High-resolution insitu structural measurements of the Li_4Ti_5O_(12)“zero-strain”insertion material.
The Journal of Physical Chemistry B,2002,106(12):3082-3086
|
CSCD被引
6
次
|
|
|
|
4.
Ohzuku T. Factor affecting the capacity retention of lithium-ion cells.
Journal of Power Sources,1995,54(1):99-102
|
CSCD被引
20
次
|
|
|
|
5.
Dong H Y. Controlled preparation and electrochemical performance of a flaky Li_4Ti_5O_(12)-graphene hybrid with a high crystallinity.
New Carbon Materials,2016,31(2):115-120
|
CSCD被引
1
次
|
|
|
|
6.
Li J. H-titanate nanotube:a novel lithium intercalation host with large capacity and high rate capability.
Electrochemistry Communications,2005,7(1):62-67
|
CSCD被引
2
次
|
|
|
|
7.
Jung H G. Microscale spherical carbon-coated Li_4Ti_5O_(12)as ultra high power anode material for lithium batteries.
Energy Environmental Science,2011,4(4):1345-1351
|
CSCD被引
24
次
|
|
|
|
8.
Wang W. A nanoparticle Mgdoped Li_4Ti_5O_(12)for high rate lithium-ion batteries.
Electrochimica Acta,2013,114:198-204
|
CSCD被引
5
次
|
|
|
|
9.
Han Y R. Synthesis of entanglement structure in nanosized Li_4Ti_5O_(12)/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solidstate reaction.
Journal of Power Sources,2012,198:294-297
|
CSCD被引
1
次
|
|
|
|
10.
Chaturvedi P. Electrical and electrochemical properties of carbon nanotube-based free standing LTO electrodes for current collectorfree Li-ion batteries.
Current Applied Physics,2019,19(11):1150-1155
|
CSCD被引
1
次
|
|
|
|
11.
Kim G O. Enhancement of high rate performance and diffusion properties for Li_4Ti_5O_(12)anode materials by carbon additive.
Materials Research Innovations,2014,19(4):244-250
|
CSCD被引
1
次
|
|
|
|
12.
廉恬柔. 纳米级Li_4Ti_5O_(12)负极材料的制备及其输运特性.
材料工程,2021,49(3):59-66
|
CSCD被引
2
次
|
|
|
|
13.
Li Q. The Mg/Zr codoping on morphology and electrochemical properties of Li_4Ti_5O_(12)anode materials.
Chemical Physics Letters,2018,711:15-22
|
CSCD被引
1
次
|
|
|
|
14.
Qi Y. Preparation and characterization of novel spinel Li_4Ti_5O_(12)-XBrX anode materials.
Electrochimica Acta,2009,54(21):4772-4776
|
CSCD被引
9
次
|
|
|
|
15.
Wolfenstine J. Electrical conductivity and rate-capability of Li_4Ti_5O_(12)as a function of heat-treatment atmosphere.
Journal of Power Sources,2009,54(21):4772-4776
|
CSCD被引
1
次
|
|
|
|
16.
Yi T F. High-performance Li_4Ti_(5-x)V_xO_(12)(0≤x≤0.3)as an anode material for secondary lithiumion battery.
Electrochimica Acta,2009,54(28):7464-7470
|
CSCD被引
14
次
|
|
|
|
17.
Sha H W. Effects of dopant on the electrochemical performance of Li_4Ti_5O_(12)as electrode material for lithium ion batteries.
Journal of Power Sources,2007,165(1):408-412
|
CSCD被引
1
次
|
|
|
|
18.
Bai Y J. Excellent long-term cycling stability of La-doped Li_4Ti_5O_(12)anode material at high current rates.
Journal of Materials Chemistry,2012,22(36):19054-19060
|
CSCD被引
7
次
|
|
|
|
19.
Zhang Q. Structural and electrochemical properties of Gd-doped Li_4Ti_5O_(12)as anode material with improved rate capability for lithium-ion batteries.
Journal of Power Sources,2015,280:355-362
|
CSCD被引
6
次
|
|
|
|
20.
Ji M. Preparation and electrochemical performance of La~(3+) and F-co-doped Li_4Ti_5O_(12)anode material for lithium-ion batteries.
Journal of Power Sources,2014,263:296-303
|
CSCD被引
4
次
|
|
|
|
|