基于μCT表征的SLM成形GH3536高温合金缺陷特征
Defect characteristics within SLM-fabricated GH3536superalloy dependence onμCT characterization
查看参考文献29篇
文摘
|
选择激光选区熔化(selective laser melting,SLM)工艺中不同激光功率和扫描速度的参数组合制备GH3536高温合金试样,采用μCT技术表征试样内部的孔隙率及缺陷特征,同时采用光学显微镜和扫描电镜验证缺陷类型,并分析熔池形貌。结果表明:SLM工艺参数与合金中缺陷特征和熔池形貌密切相关,优化参数组合时连续性熔池具有较大的长宽比、彼此搭接良好,同时成形试样的孔隙率远低于0.01%,存在随机分布、尺寸较小的气孔;偏离优化参数组合时不仅在间断性熔池界面形成了尺寸较大的孔洞,而且增加了SLM成形过程的不稳定性,形成了少量的未熔合,这两类缺陷均具有一定的各向异性;试样中还存在未能被μCT发现的微气孔和微裂纹。 |
其他语种文摘
|
GH3536superalloy samples were made by selective laser melting(SLM)with a parameter combination of laser power and scanning speed.The porosity and defect characteristics within the samples were characterized byμCT technique,and the defect types as well as the morphologies of molten pool were analyzed using optical microscope and scanning electron microscope.The results show that process parameters are closely related with defect characteristics and the morphologies of molten pool.As the laser power and scanning speed are optimized,continuous molten pool with a higher aspect ratio overlaps well with each other.The porosity in the fabricated samples is far less than 0.01%,and with randomly distributed small pores.When the deviation from the optimized process parameters occurs,not only larger voids are formed at the interface of discontinuous molten pool,but also the process instability are increased,resulting in the formation of minor amounts of lamellar lack of fusion.The latter two types of defects present a certain anisotropy.Additionally, smaller micropores and microcracks are beyond theμCT detection ability. |
来源
|
材料工程
,2022,50(10):63-72 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000475
|
关键词
|
激光选区熔化
;
GH3536合金
;
缺陷
;
各向异性
;
熔池
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
航空材料检测与评价北京市重点实验室, 航空材料检测与评价北京市重点实验室, 北京, 100095
3.
中国航空发动机集团材料检测与评价重点实验室, 中国航空发动机集团材料检测与评价重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:7340273
|
参考文献 共
29
共2页
|
1.
刘浩. 缺口对GH3536镍基高温合金蠕变性能的影响.
稀有金属材料与工程,2014,43(10):2473-2478
|
CSCD被引
9
次
|
|
|
|
2.
Kruth J P. Binding mechanisms in selective laser sintering and selective laser melting.
Rapid Prototyping Journal,2005,11(1):26-36
|
CSCD被引
72
次
|
|
|
|
3.
Chi C N. Fabrication of magnesium using selective laser melting technique.
Rapid Prototyping Journal,2011,17(6):479-490
|
CSCD被引
9
次
|
|
|
|
4.
Sun J F. Mechanical properties of Ti6Al4Voctahedral porous material unit formed by selective laser melting.
Advances in Mechanical Engineering,2012,4(9):742-760
|
CSCD被引
3
次
|
|
|
|
5.
张学军. 3D打印技术研究现状和关键技术.
材料工程,2016,44(2):122-128
|
CSCD被引
119
次
|
|
|
|
6.
Vrancken B. Heat treatment of Ti6Al4Vproduced by selective laser melting:microstructure and mechanical properties.
Journal of Alloys and Compounds,2012,541:177-185
|
CSCD被引
129
次
|
|
|
|
7.
Rafi H K. A comparison of the tensile,fatigue and fracture behavior of Ti-6Al-4Vand 15-5PH stainless steel parts made by selective laser melting.
The International Journal of Advanced Manufacturing Technology,2013,69(5):1299-1309
|
CSCD被引
10
次
|
|
|
|
8.
Brandl E. Additive manufactured AlSi10Mg samples using selective laser melting(SLM):microstructure,high cycle fatigue and fracture behavior.
Materials & Design,2012,34(1):159-169
|
CSCD被引
62
次
|
|
|
|
9.
Bean G E. Build orientation effects on texture and mechanical properties of selective laser melting inconel 718.
Journal of Materials Engineering and Performance,2019,28(4):1942-1949
|
CSCD被引
5
次
|
|
|
|
10.
赵志国. 激光选区熔化成形技术的发展现状及研究进展.
航空制造技术,2014(19):46-49
|
CSCD被引
34
次
|
|
|
|
11.
巩水利. 高能束流加工技术的应用研究与发展.
航空制造技术,2009(14):34-39
|
CSCD被引
3
次
|
|
|
|
12.
Leuders S. On the mechanical behavior of titanium alloy TiAl6V4manufactured by selective laser melting:fatigue resistance and crack growth performance.
International Journal of Fatigue,2013,48:300-307
|
CSCD被引
85
次
|
|
|
|
13.
Mezzetta J. Microstructure-properties relationships of Ti-6Al-4Vparts fabricated by selective laser melting.
International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(5):605-612
|
CSCD被引
2
次
|
|
|
|
14.
Cain V. Crack propagation and fracture toughness of Ti6Al4Valloy produced by selective laser melting.
Additive Manufacturing,2015,5:68-76
|
CSCD被引
34
次
|
|
|
|
15.
Vilaro T. As-fabricated and heat-treated microstructures of the Ti-6Al-4Valloy processed by selective laser melting.
Metallurgical Materials Transactions A,2011,42(10):3190-3199
|
CSCD被引
66
次
|
|
|
|
16.
Zhang L. Effect of processing parameters on thermal behavior and related density in GH_3536alloy manufactured by selective laser melting.
Journal of Materials Research,2019,34(8):1-10
|
CSCD被引
1
次
|
|
|
|
17.
孙闪闪. 热处理对激光选区熔化GH3536合金组织演变规律的影响研究.
机械工程学报,2020,56(21):208-218
|
CSCD被引
14
次
|
|
|
|
18.
石磊. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响.
材料工程,2020,48(6):148-155
|
CSCD被引
9
次
|
|
|
|
19.
宗学文. 激光选区熔化GH3536镍基高温合金的微观组织和晶体取向.
稀有金属材料与工程,2020,49(9):3182-3188
|
CSCD被引
10
次
|
|
|
|
20.
Thompson A. X-ray computed tomography for additive manufacturing:a review.
Measurement Science and Technology,2016,27:1-16
|
CSCD被引
1
次
|
|
|
|
|