锂离子电池厚电极结构设计的研究进展
Research progress of lithium-ion batteries thick-electrode architectural design
查看参考文献84篇
文摘
|
为了满足储能系统和电动汽车市场对于高能量密度和快充的需求,兼具高能量和高功率密度的锂离子电池得到了广泛的关注。厚电极结构设计能够显著提高电池的能量密度并降低成本,且能与各种电极材料相兼容,是发展高能量密度锂离子电池的研究热点之一。厚电极通常面临着力学性能差和反应动力学慢等问题,因此构建力学性能良好和完善的锂离子及电子传输网络的厚电极至关重要。本文首先分析了厚电极的电化学特性和关键科学问题,然后梳理了目前构建厚电极的各种策略及其优势,最后探讨了厚电极的设计原则和发展方向。 |
其他语种文摘
|
To meet the requirements of high energy density and fast charge for energy storage systems and electric vehicles,the high-energy and high-power density lithium-ion batteries have attracted numerous attentions.Designing thick-electrode can significantly increase energy density and reduce cost,and is also compatible with various electrode materials,which makes it one of hottest researches for the development of high-energy density lithium-ion batteries.Thick electrodes usually suffer from poor mechanical properties and sluggish reaction kinetics.Therefore,it is very important to construct a thick electrode with good mechanical properties and fast transport network for lithium ion and electron.The electrochemical behavior and key scientific issues of thick electrodes were firstly analyzed in this review,the current strategies for constructing thick electrodes and their advantages were then introduced,and finally the design principles and the development direction of thick electrodes were pointed out. |
来源
|
材料工程
,2022,50(10):38-54 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001086
|
关键词
|
锂离子电池
;
厚电极
;
高能量密度
;
高功率密度
;
迂曲度
|
地址
|
1.
华中科技大学材料科学与工程学院, 武汉, 430074
2.
华中科技大学电气与电子工程学院, 武汉, 430074
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7340271
|
参考文献 共
84
共5页
|
1.
Armand M. Building better batteries.
Nature,2008,451(7179):652-657
|
CSCD被引
1185
次
|
|
|
|
2.
Schmuch R. Performance and cost of materials for lithium-based rechargeable automotive batteries.
Nature Energy,2018,3(4):267-278
|
CSCD被引
135
次
|
|
|
|
3.
Wang L. Reviving lithium cobalt oxidebased lithium secondary batteries-toward a higher energy density.
Chemical Society Reviews,2018,47(17):6505-6602
|
CSCD被引
43
次
|
|
|
|
4.
Kuang Y. Thick electrode batteries: principles,opportunities,and challenges.
Advanced Energy Materials,2019,9(33):1901457
|
CSCD被引
38
次
|
|
|
|
5.
Cao W. Batteries with high theoretical energy densities.
Energy Storage Materials,2020,26:46-55
|
CSCD被引
23
次
|
|
|
|
6.
Bruce P G. Li-O_2and Li-S batteries with high energy storage.
Nature Materials,2011,11(1):19-29
|
CSCD被引
625
次
|
|
|
|
7.
Seh Z W. Designing high-energy lithium-sulfur batteries.
Chem Soc Rev,2016,45(20):5605-5634
|
CSCD被引
250
次
|
|
|
|
8.
Liu Q. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping.
Nature Energy,2018,3(11):936-943
|
CSCD被引
56
次
|
|
|
|
9.
Zhang J N. Trace doping of multiple elements enables stable battery cycling of LiCoO_2at 4.6V.
Nature Energy,2019,4(7):594-603
|
CSCD被引
72
次
|
|
|
|
10.
Yan P. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode.
Nature Communications,2018,9:2437
|
CSCD被引
21
次
|
|
|
|
11.
袁颂东. 锂离子电池高镍三元材料的研究进展.
材料工程,2019,47(10):1-9
|
CSCD被引
7
次
|
|
|
|
12.
张盼盼. 锂离子电池富锂锰正极材料的最新进展.
材料工程,2021,49(3):48-58
|
CSCD被引
4
次
|
|
|
|
13.
Liu J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries.
Materials Today,2021,43:132-165
|
CSCD被引
24
次
|
|
|
|
14.
杨续来. 高能量密度锂离子电池结构工程化技术探讨.
储能科学与技术,2020,9(4):1127-1136
|
CSCD被引
8
次
|
|
|
|
15.
Zheng H. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes.
Electrochimica Acta,2012,71:258-265
|
CSCD被引
16
次
|
|
|
|
16.
Du Z. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries.
Journal of Applied Electrochemistry,2017,47(3):405-415
|
CSCD被引
11
次
|
|
|
|
17.
Billaud J. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries.
Nature Energy,2016,1(8):17061
|
CSCD被引
1
次
|
|
|
|
18.
Yang K. Constructing a highly efficient aligned conductive network to facilitate depolarized highareal-capacity electrodes in Li-ion batteries.
Advanced Energy Materials,2021,11(22):2100601
|
CSCD被引
10
次
|
|
|
|
19.
Elango R. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity.
Advanced Energy Materials,2018,8(15):1703031
|
CSCD被引
9
次
|
|
|
|
20.
Jeong H. Three-dimensional cathode with periodically aligned microchannels for improving volumetric energy density of lithium-ion batteries.
Journal of Power Sources,2020,451:227764
|
CSCD被引
2
次
|
|
|
|
|