中国十条主要入海河流河口汞的形态分布特征与入海通量估算
The distribution characteristics of mercury species in the estuaries of the ten main rivers in China and flux of mercury from rivers to the ocean
查看参考文献32篇
文摘
|
为了解我国河流向海洋汞的输送通量,选取我国沿海10条大型河流的河口作为采样点,采集水体和沉积物,测定水中不同形态汞,包括总汞(THg)、溶解态汞(DHg)、颗粒态汞(PHg)、总氮(TN)、总磷(TP)和溶解有机碳(DOC)等,测定了沉积物THg和甲基汞(MeHg)等.结合河流的径流量,对陆地经河流向海洋汞的输入量进行了粗略的估算.结果显示:我国十条主要入海河流地表水THg含量为2.79~145.15 ng·L~(-1),DHg含量为0.61~4.44 ng·L~(-1),PHg含量为1.28~143.54 ng·L~(-1).PHg约占THg含量的41%~99%,DHg约占THg含量的1%~35%.表层沉积物THg含量为0.02~0.3 mg·kg~(-1),MeHg含量为0.04~2.00 μg·kg~(-1).MeHg百分含量为0.1%~1.2%.沉积物THg、MeHg和TOC之间呈显著相关性(p<0.01).我国主要河流经径流输入THg的入海通量为10.01~29.92 t·a~(-1),长江是我国河流向海洋汞输送通量的贡献量最大,约占到我国主要河流入海汞通量的58%~69%.本研究基于实测数据的估算值与前人的估算结果对比,我国主要河流的入海汞通量仅占全球入海汞通量0.2%~15%;对比前人对中国河流向海洋汞的输送通量实测结果以及模型模拟结果显示,实测结果在同一数量级,且实测结果比模拟结果更可靠. |
其他语种文摘
|
In order to understand the distribution and flux of mercury from rivers to the ocean,surface water and sediment samples from the estuaries of 10 major rivers along the Chinese coasts were collected. Water samples were analyzed for the total mercury(THg)and dissolved mercury(DHg), particulate mercury(PHg),total nitrogen(TN),total phosphorus(TP),dissolved organic carbon(DOC),and sediments were analyzed for THg and methyl mercury(MeHg). The amount of mercury input from rivers to the ocean was estimated based on river runoff and Hg data.The results showed that THg concentrations in river water varied from 2.79 to 145.15 ng·L~(-1),DHg concentrations varied from 0.61 to 4.44 ng·L~(-1),and the PHg concentration varied from 1.28 to 143.54 ng·L~(-1). The PHg accounted for 41%~99% of THg,and DHg accounted for 1%~35%. The THg and MeHg concentrations in the surface sediments ranged from 0.02 to 0.3 mg·kg~(-1),and from 0.04 to 2.00 μg·kg~(-1),respectively. The ratios of MeHg to THgin the sediments were 0.1%~1.2%. Total organic carbon(TOC)is significantly correlated with THg and MeHg contents in the sediments(p<0.01). The flux of THg input into the ocean through runoff of ten major rivers is about 10.01~29.92 t·a~(-1),and the Yangtze River is the major contributor accounting for 58%~69%. Based on our data and the previously published results,the mercury flux from Chinese major rivers is only accounting for 0.2%~15% of the global mercury flux into the ocean. This suggests that observation-based flux results were more reliable than model-based estimates. |
来源
|
环境科学学报
,2022,42(10):323-331 【核心库】
|
DOI
|
10.13671/j.hjkxxb.2022.0043
|
关键词
|
河口
;
汞
;
分布特征
;
入海通量
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
贵州医科大学, 公共卫生学院, 贵阳, 550025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2468 |
学科
|
环境污染及其防治 |
基金
|
贵州省项目
;
中国科学院贵阳地球化学研究所环境地球化学国家重点实验室基金
|
文献收藏号
|
CSCD:7339102
|
参考文献 共
32
共2页
|
1.
AMAP/UN Environment.
Technical Background Report for the Global Mercury Assessment 2018,2019:viii 426 pp
|
CSCD被引
1
次
|
|
|
|
2.
AMAP/UNEP.
Technical Background Report for the Global Mercury Assessment 2013,2013:vi,263
|
CSCD被引
1
次
|
|
|
|
3.
Amos Helen M. Global biogeochemical implications of mercury discharges from rivers and sediment burial.
Environmental Science & Technology,2014,48(16):9514-9522
|
CSCD被引
1
次
|
|
|
|
4.
Amos Helen M. Legacy impacts of all-time anthropogenicemissions on the global mercury cycle.
Global Biogeochemical Cycles,2013,27(2):410-421
|
CSCD被引
1
次
|
|
|
|
5.
Cossa D. Mercury fluxes at the ocean margins.
Global and regional mercury cycles: sources,fluxes and mass balances,1996:229-247
|
CSCD被引
1
次
|
|
|
|
6.
Gao X L. Trace metals in the suspended particulatematter of the Yellow River (Huanghe) Estuary: Concentrations,potential mobility,contamination assessment and the fluxes into the Bohai Sea.
Continental Shelf Research,2015,104:25-36
|
CSCD被引
3
次
|
|
|
|
7.
国家环境保护局.
GB11893-89水质总磷的测定:钼酸铵分光光度法,1989
|
CSCD被引
1
次
|
|
|
|
8.
国家环境保护局.
GB3838-2002地表水环境质量标准,2002
|
CSCD被引
4
次
|
|
|
|
9.
国家技术监督局.
GB11901-89水质悬浮物的测定:重量法,1989
|
CSCD被引
1
次
|
|
|
|
10.
何天容. 萃取-乙基化结合GC-CVAFS法测定沉积物及土壤中的甲基汞.
地球与环境,2004,32(2):4
|
CSCD被引
1
次
|
|
|
|
11.
境保护部.
HJ636-2012水质总氮的测定:碱性过硫酸钾消解紫外分光光度法,2012
|
CSCD被引
1
次
|
|
|
|
12.
环境保护部.
HJ897-2017水质叶绿素a的测定:分光光度法,2017
|
CSCD被引
1
次
|
|
|
|
13.
Lepine L. Field sampling and analytical intercomparison for mercury and methylmercury determination in natural water.
Water,Air,and Soil Pollution,1995,80(1/4):159-168
|
CSCD被引
1
次
|
|
|
|
14.
Lindqvist O. Mercury in the Swedish environment-recent research on causes,consequences and corrective methods.
Water,Air,and Soil Pollution,1991,55(1):xi-261
|
CSCD被引
124
次
|
|
|
|
15.
Liu M D. Mercury export from mainland China to adjacent seas and its influence on the marine mercury balance.
Environmental Science & Technology,2016,50(12):6224-6622
|
CSCD被引
5
次
|
|
|
|
16.
Liu M D. Rivers as the largest source of mercury to coastal oceans worldwide.
Nature Geoscience,2021,14(9):672-677
|
CSCD被引
5
次
|
|
|
|
17.
Liu M D. Observation-based mercury export from rivers to coastal oceans in East Asia.
Environmental science & technology,2021,55(20):14269-14280
|
CSCD被引
1
次
|
|
|
|
18.
刘敬伟. 人类活动对鸭绿江下游水沙变化的影响.
辽东学院学报(自然科学版),2015,22(1):27-32
|
CSCD被引
4
次
|
|
|
|
19.
Mason R P. Role of the ocean in the global mercury cycle.
Global Biogeochemical Cycles,2002,16(4):401-4014
|
CSCD被引
1
次
|
|
|
|
20.
Mason Robert P. Mercury biogeochemical cycling in the ocean and policy implications.
Environmental Research,2012,119:101-117
|
CSCD被引
1
次
|
|
|
|
|