高镍三元锂离子电池低温放电性能研究进展
Research progress in low-temperature discharge performance of Ni-rich ternary lithium-ion batteries
查看参考文献147篇
文摘
|
随着新能源汽车产业的迅速发展,消费者对电动汽车续航里程的要求不断提高。高镍三元锂离子电池因其比能量高成为电动汽车中最具应用前景的动力电池,但该电池体系依然面临着低温性能差的问题。本文综述近年来高镍三元锂离子电池低温性能的研究进展,重点总结高镍三元锂离子电池低温性能的影响因素,一方面从热力学角度分析低温下高镍三元正极材料和石墨负极材料的结构变化、电解液相态和溶剂化结构变化以及黏结剂玻璃化转变对电池低温性能的影响;另一方面从动力学角度分析高镍三元电池低温放电过程中的速率控制步骤。归纳目前高镍三元锂离子电池低温性能的主要改善措施,其中低温电解液的设计包括优化溶剂、改善锂盐及使用新型添加剂三个方面,对电极材料低温性能的改善主要是通过体相掺杂、表面包覆及材料颗粒粒径降低的方式。总结电池中低温性能研究中存在的对电池低温热力学特性研究不够明确、对电池低温动力学过程研究方式单一以及对电池中的反应顺序存在的影响认识不足等问题。 |
其他语种文摘
|
With the rapid development of the new energy automotive industry,consumers’ requirements for the range of electric vehicles have been increasing.The Ni-rich ternary lithium-ion battery has become the most promising power battery in electric vehicles due to its high specific energy,but the battery system still faces the problem of poor performance at low temperature.The research progress on low temperature performance of Ni-rich ternary power battery in recent years was summarized in this review.The influence factors on the low temperature performance of Ni-rich ternary power battery were summarized emphatically.On the one hand,the effects of low temperature performance from thermodynamics were analyzed,including the structural change of the Ni-rich ternary cathode materials and graphite anode materials,electrolytic phase transformation and solvation structure changes,and glass transition of binder.On the other hand,rate controlling step in the low temperature discharge process in the Ni-rich ternary lithium-ion battery was summed up.According to this,main modification measures of low-temperature performance in Ni-rich ternary power battery were summarized.Low temperature electrolyte was designed by optimizing solvents,improving lithium salts and applying new additives.In order to improve the low temperature performance of electrode materials,three methods were mainly employed:substitution,surface modification and smaller material particle size.The remaining shortcomings of the research on low-temperature performance of the battery were summarized,and the research on the low temperature thermodynamic characteristics of batteries is not clear enough.In addition,the research methods for the low temperature kinetic process of batteries are single,and the influence of the reaction sequence in batteries is insufficiently understood. |
来源
|
材料工程
,2022,50(9):1-17 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000485
|
关键词
|
高镍三元锂离子电池
;
低温
;
热力学
;
动力学
;
电解液
|
地址
|
1.
有研科技集团有限公司, 国家动力电池创新中心, 北京, 100088
2.
国联汽车动力电池研究院有限责任公司, 北京, 100088
3.
北京有色金属研究总院, 北京, 100088
4.
上海大学材料基因组工程研究院, 上海, 200444
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学;电工技术 |
基金
|
国家重点研发计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7332135
|
参考文献 共
147
共8页
|
1.
Xu J. Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries.
Science China Materials,2017,61(3):371-381
|
CSCD被引
8
次
|
|
|
|
2.
Lyu Y C. An overview on the advances of LiCoO_2 cathodes for lithium-ion batteries.
Advanced Energy Materials,2020,11(2):2000982
|
CSCD被引
40
次
|
|
|
|
3.
Ohzuku T. Layered lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for lithium-ion batteries.
Chemistry Letters,2001,1(7):642-643
|
CSCD被引
201
次
|
|
|
|
4.
Choi J W. Promise and reality of post-lithiumion batteries with high energy densities.
Nature Reviews Materials,2016,1(4):1-16
|
CSCD被引
294
次
|
|
|
|
5.
Marker K. Evolution of structure and lithium dynamics in LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2 (NMC811)cathodes during electrochemical cycling.
Chemistry of Materials,2019,31(7):2545-2554
|
CSCD被引
12
次
|
|
|
|
6.
Berckmans G. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030.
Energies,2017,10(9):1314
|
CSCD被引
9
次
|
|
|
|
7.
Choi K H. Design strategies for development of nickel-rich ternary lithium-ion battery.
Ionics,2020,26(3):1063-1080
|
CSCD被引
9
次
|
|
|
|
8.
Zhang L J. Coupling analysis and performance study of commercial 18650lithium-ion batteries under conditions of temperature and vibration.
Energies,2018,11(10):2856
|
CSCD被引
2
次
|
|
|
|
9.
Yang Y. Fluorinated carboxylate esterbased electrolyte for lithium ion batteries operated at low temperature.
Chemical Communications,2020,56(67):9640-9643
|
CSCD被引
9
次
|
|
|
|
10.
Rodrigues M T F. A materials perspective on Li-ion batteries at extreme temperatures.
Nature Energy,2017,2(8):17108
|
CSCD被引
43
次
|
|
|
|
11.
Yamada A. Jahn-Teller structural phase transition around 280Kin LiMn_2O_4.
Materials Research Bulletin,1995,30(6):715-721
|
CSCD被引
13
次
|
|
|
|
12.
Piszora P. Synchrotron X-ray powder diffraction studies on the phase transitions in LiMn_2O_4.
Journal of Alloys and Compounds,2004,362(1/2):231-235
|
CSCD被引
1
次
|
|
|
|
13.
Baran V. Thermal structural behavior of electrodes in Li-ion battery studied in operando.
Journal of the Electrochemical Society,2018,165(9):1975-1982
|
CSCD被引
2
次
|
|
|
|
14.
Liang C P. Unraveling the origin of instability in Ni-rich LiNi_(1-2x)Co_xMn_xO_2 (NCM)cathode materials.
The Journal of Physical Chemistry C,2016,120(12):6383-6393
|
CSCD被引
15
次
|
|
|
|
15.
Hong C Y. Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries.
Journal of Materials Chemistry A,2020,8(17):8540-8547
|
CSCD被引
10
次
|
|
|
|
16.
Meng F B. Plasma assisted synthesis of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2 cathode materials with good cyclic stability at subzero temperatures.
Journal of Energy Chemistry,2021,56:46-55
|
CSCD被引
1
次
|
|
|
|
17.
Ryu H H. Capacity fading of Ni-rich Li[Ni_xCo_yMn_(1-x-y)]O_2 (0.6≤x≤0.95)cathodes for high-energy-density lithium-ion batteries:bulk or surface degradation?.
Chemistry of Materials,2018,30(3):1155-1163
|
CSCD被引
91
次
|
|
|
|
18.
Campagnoli G. Possible metal-metal phase transitions,particularly in LiC6.
Synthetic Metals,1985,12(1/2):39-44
|
CSCD被引
1
次
|
|
|
|
19.
Matadi B P. Irreversible capacity loss of Li-ion batteries cycled at low temperature due to an untypical layer hindering Li diffusion into graphite electrode.
Journal of the Electrochemical Society,2017,164(12):2374-2389
|
CSCD被引
5
次
|
|
|
|
20.
Senyshyn A. Low-temperature performance of Li-ion batteries:the behavior of lithiated graphite.
Journal of Power Sources,2015,282:235-240
|
CSCD被引
20
次
|
|
|
|
|