帮助 关于我们

返回检索结果

图像自寻的弹药目标检测方法综述
Review on Target Detection of Image Homing Ammunition

查看参考文献80篇

文摘 弹载图像目标检测方法是实现图像自寻的弹药“发射后不管”、对目标进行自主打击的关键技术。弹药图像自寻的面临着成像环境恶劣,目标特性变化快,对算法体积、速度要求苛刻等问题。围绕弹载目标检测难点问题进行综述,将基于深度学习的目标检测方法区分为基于候选框、无候选框和基于transformer的方法,回顾了各类方法主要研究进展;对特征提取网络轻量化、预测特征图增强、非极大值抑制后处理算法、训练中样本均衡、模型压缩等弹载图像目标检测模型部署中的关键技术进行了梳理;对比了典型目标检测方法在ImageNet、COCO及弹载图像目标数据集上的性能,并对未来发展进行展望。
其他语种文摘 The onboard image target detection method is the key technology to realize the autonomous attack on the target by the “fire-and-forget” image homing ammunition. At present, the image homing of ammunition is faced with some problems, such as bad imaging environment, rapid change of targets' characteristics, and strict requirements for algorithm volume and speed. Firstly, the target detection methods based on deep learning are divided into methods based on anchor box, methods without anchor box and methods based on transformer, and the main technical progress of various methods is reviewed. Then, the key technologies in onboard image target detection model deployment, such as lightweight feature extraction network, enhancement of feature map for prediction, non-maximum suppression postprocessing algorithm, sample equalization in training, and model compression, are studied. Finally, the performances of the typical detection algorithms on ImageNet, COCO and datasets for onboard image are compared, and the possible development in the future is looked into.
来源 兵工学报 ,2022,43(10):2687-2704 【核心库】
DOI 10.12382/bgxb.2021.0610
关键词 弹载图像 ; 目标检测 ; 深度学习 ; 模型部署
地址

陆军炮兵防空兵学院高过载弹药制导控制与信息感知实验室, 安徽, 合肥, 230031

语种 中文
文献类型 综述型
ISSN 1000-1093
学科 一般工业技术
基金 军队型号项目
文献收藏号 CSCD:7331159

参考文献 共 80 共4页

1.  钱立志. 电视末制导炮弹武器系统关键技术研究,2006:2-6 CSCD被引 6    
2.  文苏丽. DARPA导引头成本转换项目分析. 战术导弹技术,2016(2):5-9 CSCD被引 1    
3.  Girshick R. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587 CSCD被引 95    
4.  Felzenszwalb P F. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645 CSCD被引 541    
5.  徐英. 面向合成孔径雷达图像任意方向舰船检测的改进YOLOv3模型. 兵工学报,2021,42(8):1698-1707 CSCD被引 6    
6.  杨传栋. 基于CNN的弹载图像目标检测方法研究. 战术导弹技术,2019(4):85-92 CSCD被引 3    
7.  雷鸣. 基于模型压缩YOLOv4的弹载图像舰船目标实时检测. 兵器装备工程学报,2021,42(9):225-230 CSCD被引 1    
8.  陈栋. 面向深度学习的弹载图像处理异构加速现状分析. 航空兵器,2021,28(3):10-17 CSCD被引 3    
9.  侯凯强. 弹载人工智能目标识别算法的嵌入式实现方法研究. 制导与引信,2019,40(3):40-45 CSCD被引 2    
10.  钱立志. 一种弹载视频图像实时消旋方法. 弹箭与制导学报,2009,29(3):26-28 CSCD被引 1    
11.  Ren S. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(6):1137-1149 CSCD被引 4394    
12.  Liu W. SSD: single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision,2016:21-37 CSCD被引 333    
13.  Redmon J. YOLO9000: better, faster, stronger. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2017:6517-6525 CSCD被引 50    
14.  Redmon J. Yolov3: an incremental improvement,2018 CSCD被引 699    
15.  Bochkovskiy A. YOLOv4: optimal speed and accuracy of object detection,2020 CSCD被引 430    
16.  Liu S. Path aggregation network for instance segmentation. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2018:8759-8768 CSCD被引 5    
17.  Lin T Y. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,99:2999-3007 CSCD被引 100    
18.  Redmon J. You only look once:unified, real-time object detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788 CSCD被引 107    
19.  Huang L. DenseBox: unifying landmark localization with end to end object detection,2015 CSCD被引 4    
20.  Tian Z. FCOS: fully convolutional one-stage object detection,2018 CSCD被引 1    
引证文献 4

1 惠康华 基于YOLOv5的增强多尺度目标检测方法 兵工学报,2023,44(9):2600-2610
CSCD被引 2

2 赵晓冬 基于YOLOv5的无人车自主目标识别优化算法 兵工学报,2023,44(9):2732-2744
CSCD被引 0 次

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号