无位置传感器电机控制在火炮装填应用的关键技术研究
Investigation of the Sensorless Motor Control Technology for Gun Autoloading
查看参考文献19篇
文摘
|
现代大口径火炮电动装填系统涉及多个电机协同控制,无位置传感器控制技术的应用可以显著提高驱动系统可靠性。而表贴式永磁同步电机在零/低速下的转子位置辨识恰是该技术的难点。针对该问题,提出采用基于机械运动模型的Kalman滤波器辅助转子位置估计方法;辅以观测器抗扰技术以消除模型参数不确定等扰动对转子位置辨识的影响,实现零/低速重载下可靠的起动/急停控制。新算法突破了常规的基于电气模型转子位置估计方法的局限性,进而大幅度提高了无位置传感器技术在零/低速下的负载能力,实现了可以媲美有位置传感器伺服的驱动控制功能。以该榴弹炮模块药装填和输弹过程作为算例,通过仿真验证了该技术。该无位置传感器电机控制技术已应用于155 mm榴弹炮装填系统。 |
其他语种文摘
|
The modern automatic loading system for large caliber guns involves the collaborative control of multiple motors. The application of sensorless technology can significantly improve the reliability of driving systems. The rotor position identification of surface-mounted permanent-magnet synchronous motor at zero-/low-speeds is a difficult problem in sensorless control. To deal with it, an extended Kalman filter based on mechanical motion model is proposed to assist rotor position estimation. At the same time, the observer disturbance rejection technology is employed to eliminate the influence of disturbances such as model parameter uncertainty to rotor position identification, and to realize reliable start-stop control under zero/low speeds and heavy loads. The proposed method overcomes the limitation of the conventional rotor position estimation method based on the electrical model, greatly improves the load capacity of the sensorless technology at zero/low speeds, and realizes the performance comparable to that of the position sensor servo. This sensorless motor control technology is applied to the 155 mm gun loading system. Finally, the technology is verified by the operation simulation of the modular explosive loader and projectile loader as examples. |
来源
|
兵工学报
,2022,43(10):2417-2428 【核心库】
|
DOI
|
10.12382/bgxb.2022.0330
|
关键词
|
火炮
;
自动装填系统
;
无位置传感器控制
;
电机控制
;
Kalman滤波
|
地址
|
1.
南京理工大学机械工程学院, 江苏, 南京, 210094
2.
西北机电工程研究所, 陕西, 咸阳, 712099
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金青年科学基金
|
文献收藏号
|
CSCD:7331133
|
参考文献 共
19
共1页
|
1.
钱林方.
中远程压制火炮射击精度理论,2020
|
CSCD被引
4
次
|
|
|
|
2.
侯保林.
火炮自动装填,2010
|
CSCD被引
28
次
|
|
|
|
3.
林通. 面向输弹一致性的某输弹机稳健优化设计研究.
兵工学报,2019,40(2):22-29
|
CSCD被引
1
次
|
|
|
|
4.
刘太素. 火炮输药机构小射角输药到位一致性稳健优化设计.
兵工学报,2020,41(8):1473-1482
|
CSCD被引
3
次
|
|
|
|
5.
Wang C. Analysis and suppression of limit cycle oscillation for transmission system with backlash nonlinearity.
IEEE Transactions on Industrial Electronics,2017,64(12):9261-9270
|
CSCD被引
6
次
|
|
|
|
6.
赵其进. 轮毂电机全速度范围无位置传感器控制研究.
兵工学报,2019,40(5):915-926
|
CSCD被引
6
次
|
|
|
|
7.
Chen Z Q. An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors.
IEEE Transactions on Industrial Electronics,2003,50(2):288-295
|
CSCD被引
41
次
|
|
|
|
8.
Xiao D X. Complex-coefficient adaptive disturbance observer for position estimation of IPMSMs with robustness to DC errors.
IEEE Transactions on Industrial Electronics,2020,67(7):5924-5935
|
CSCD被引
1
次
|
|
|
|
9.
Jiang F. Robustness improvement of model-based sensorless SPMSM drivers based on an adaptive extended state observer and an enhanced quadrature PLL.
IEEE Transactions on Power Electronics,2020,36(4):4802-4814
|
CSCD被引
6
次
|
|
|
|
10.
Wang G L. DSP-based control of sensorless IPMSM drives for wide-speed-range operation.
IEEE Transactions on Industrial Electronics,2013,60(2):720-727
|
CSCD被引
26
次
|
|
|
|
11.
Xie G. Minimum-voltage vector injection method for sensorless control of PMSM for low-speed operations.
IEEE Transactions on Power Electronics,2016,31(2):1785-1794
|
CSCD被引
12
次
|
|
|
|
12.
Flieh H M. Self-sensing via flux injection with rapid servo dynamics including a smooth transition to back-emf tracking self-sensing.
IEEE Transactions on Industry Applications,2020,56(3):2673-2684
|
CSCD被引
1
次
|
|
|
|
13.
Ni R. Self-sensing via flux injection with rapid servo dynamics including a smooth transition to back-emf tracking self-sensing.
IEEE Transactions on Power Electronics,2017,32(7):5425-5437
|
CSCD被引
16
次
|
|
|
|
14.
Shuang B. Improved cross-coupling effect compensation method for sensorless control of IPMSM with high frequency voltage injection.
IEEE Transactions on Energy Conversion,2021,37(1):347-358
|
CSCD被引
3
次
|
|
|
|
15.
Lin T C. Sensorless operation capability of surface-mounted permanent-magnet machine based on high-frequency signal injection methods.
IEEE Transactions on Industry Applications,2015,51(3):2161-2171
|
CSCD被引
23
次
|
|
|
|
16.
Sun Y G. Unified wide-speed sensorless scheme using nonlinear optimization for IPMSM drives.
IEEE Transactions on Power Electronics,2017,32(8):6308-6322
|
CSCD被引
1
次
|
|
|
|
17.
Sun L. Investigation of a practical convex optimization-based sensorless scheme for IPMSM drives.
IEEE Transactions on Power Electronics,2019,34(12):12437-12452
|
CSCD被引
1
次
|
|
|
|
18.
Wang Z. Position sensorless control of interleaved CSI fed PMSM drive with extended Kalman filter.
IEEE Transactions on Magnetics,2012,48(11):3688-3691
|
CSCD被引
7
次
|
|
|
|
19.
王明明. 基于概率密度演化方法的火炮输弹过程不确定性分析.
兵工学报,2021,43(6):1215-1224
|
CSCD被引
1
次
|
|
|
|
|