具有Robin边界条件的Schrodinger算子传输特征值密度
On the Density of Transmission Eigenvalue for the Schrodinger Operator with the Robin Boundary Condition
查看参考文献19篇
文摘
|
本文研究具有Robin边界条件的传输特征值问题,运用指数型整函数的相关性质刻画特征值密度与势函数支撑区间长度的关系.同时,证明传输特征值问题等价于一类边界条件带有谱参数的Sturm-Liouville问题. |
其他语种文摘
|
In this paper, we study the transmission eigenvalue problem with the Robin boundary condition. Applying the related properties of entire function of exponential type, we show the relationship between the density of eigenvalues and the length of the support interval of the potential function. Meanwhile, we prove that the transmission eigenvalue problem is equivalent to a kind of Sturm-Liouville problem with spectral parameter in the boundary condition. |
来源
|
数学学报
,2022,65(6):959-966 【核心库】
|
DOI
|
10.12386/A20210064
|
关键词
|
传输特征值
;
零点密度
;
指数型整函数
;
指示函数
;
Sturm-Liouville问题
|
地址
|
南京信息工程大学数学与统计学院, 南京, 210044
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0583-1431 |
学科
|
数学 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:7331116
|
参考文献 共
19
共1页
|
1.
Aktosun T. The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable speed wave equation.
Inverse Problems,2011,27(11):115004,17 pp
|
CSCD被引
5
次
|
|
|
|
2.
Aktosun T. Determining the shape of a human vocal tract from pressure measurements at the lips.
Inverse Problems,2017,33(11):115002,33 pp
|
CSCD被引
2
次
|
|
|
|
3.
Aktosun T. Transmission eigenvalues for the self-adjoint Schrodinger operator on the half line.
Inverse Problems,2014,30(7):075001,23 pp
|
CSCD被引
3
次
|
|
|
|
4.
Boas R P.
Entire Functions,1954
|
CSCD被引
15
次
|
|
|
|
5.
Bondarenko N. On a local solvability and stability of the inverse transmission eigenvalue problem.
Inverse Problems,2017,33(11):115010,19
|
CSCD被引
4
次
|
|
|
|
6.
Buterin S A. On a regularization approach to the inverse transmission eigenvalue problem.
Inverse Problems,2020,36(10):105002,20 pp
|
CSCD被引
2
次
|
|
|
|
7.
Buterin S A. On an inverse transmission problem from complex eigenvalues.
Results Math,2017,71(3):859-866
|
CSCD被引
2
次
|
|
|
|
8.
Colton D. The existence of complex transmission eigenvalues for spherically stratified media.
Applicable Analysis,2016,96(1):39-47
|
CSCD被引
4
次
|
|
|
|
9.
Ya Levin B. Lectures on Entire Functions.
Transl. Math. Monograpns, Vol. 150,1996
|
CSCD被引
1
次
|
|
|
|
10.
McLaughlin J R. On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues.
J. Differential Equations,1994,107(2):351-382
|
CSCD被引
5
次
|
|
|
|
11.
Rundell W. Reconstruction techniques for classical inverse Sturm-Liouville problems.
Math. Cornput,1992,58(197):161-183
|
CSCD被引
10
次
|
|
|
|
12.
Wang Y P. The inverse interior transmission eigenvalue problem with mixed spectral data.
Appl. Math. Comput,2019,343(15):285-298
|
CSCD被引
2
次
|
|
|
|
13.
Wei G. Inverse spectral analysis for the transmission eigenvalue problem.
Inverse Problems,2013,29(11):115012,24
|
CSCD被引
3
次
|
|
|
|
14.
Wei Z Y. Unique reconstruction of the potential for the interior transmission eigenvalue problem for spherically stratified media.
Inverse Problems,2020,36(3):035017,20 pp
|
CSCD被引
3
次
|
|
|
|
15.
Xu Q Q. On the partial inverse problems for the transmission eigenvalue problem of the Schrodinger operator.
Results Math,2021,71(2):79,12 pp
|
CSCD被引
1
次
|
|
|
|
16.
Xu X C. On the direct and inverse transmission eigenvalue problems for the Schrodinger operator on the half line.
Math. Methods Appl. Sci,2020,43(15):8434-8448
|
CSCD被引
3
次
|
|
|
|
17.
Xu X C. On the inverse spectral stability for the transmission eigenvalue problem with finite data.
Inverse Problems,2020,36(8):085006,17 pp
|
CSCD被引
2
次
|
|
|
|
18.
Xu X C. On a non-uniqueness theorem of the inverse transmission eigenvalues problem for the Schrodinger operator on the half line.
Results Math,2019,74(3):103,7 pp
|
CSCD被引
3
次
|
|
|
|
19.
Yang C F. Uniqueness of the interior transmission problem with partial information on the potential and eigenvalues.
J. Differential Equations,2016,260(6):4871-4887
|
CSCD被引
2
次
|
|
|
|
|