电子束选区熔化制备TiAl合金叶片热冲击失效机理
Thermal shock failure mechanism of TiAl alloy blade prepared by SEBM
查看参考文献26篇
文摘
|
电子束选区熔化(selective electron beam melting,SEBM)增材制造技术在制备具有低室温塑性的金属间化合物材料方面具有独特的技术优势,采用该技术制备的TiAl合金部件已经在先进航空发动机获得成功应用。本研究以Ar气雾化的Ti-48Al-2Cr-2Nb预合金粉末为原料,采用SEBM成功制备出TiAl合金低压涡轮导向叶片模拟件,并对叶片的抗热冲击性能及随炉试棒的室温拉伸性能进行评价。结果表明:SEBM制备的TiAl合金经热处理后室温抗拉强度可达515 MPa,断后伸长率为1.13%;TiAl合金叶片模拟件经700 ℃水淬热冲击120次后结构完整,经900 ℃水淬热冲击6次后叶身部分出现垂直于径向的裂纹;结合裂纹扩展路径和裂纹断口分析,确定叶片部件在热冲击条件下失效的主要机制是表面较大粗糙度引起的应力集中。 |
其他语种文摘
|
Selective electron beam melting (SEBM), which is a powder-bed fusion additive manufacturing technology has unique advantages in the preparation of intermetallic materials with low room temperature plasticity. Recently TiAl alloy parts prepared by SEBM have been successfully used in advanced aeroengines. In this study, crack-free TiAl alloy low-pressure turbine blade simulation parts were prepared by SEBM using Ti-48Al-2Cr-2Nb powder. The tensile properties of the samples at room temperature and the thermal shock resistance of the blades were evaluated. The results indicate that the room temperature tensile strength of TiAl alloy prepared by SEBM can reach 515 MPa after heat treatment, and the elongation after failure is 1.13%. No cracks are found after 120 cycles of thermal shocks at 700 °C tested by the water quenching. The crack perpendicular to the radial direction is appeared in the aerofoil position after 6 times of accelerated thermal shocks tested at 900 °C. Combined with the analysis of crack propagation path and crack fracture, it is determined that the main mechanism of blade component failure under thermal shock conditions is due to the stress concentration caused by the large surface roughness. |
来源
|
航空材料学报
,2022,42(5):91-99 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000036
|
关键词
|
电子束选区熔化
;
钛铝合金
;
热冲击
;
室温拉伸
|
地址
|
1.
北京航空航天大学材料科学与工程学院, 北京, 100191
2.
北京航空航天大学前沿科学技术创新研究院, 北京, 100191
3.
长沙新材料产业研究院有限公司, 长沙, 410000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划
;
国家重大科技专项
;
国家自然科学基金
|
文献收藏号
|
CSCD:7324948
|
参考文献 共
26
共2页
|
1.
Kim Y W. Advances in gammalloy materialsprocesses-application technology: successes, dilemmas, and future.
JOM,2018,70(4):553-560
|
CSCD被引
31
次
|
|
|
|
2.
Appel F.
Gamma titanium aluminide alloys: science and technology,2011
|
CSCD被引
20
次
|
|
|
|
3.
Wu X. Review of alloy and process development of TiAl alloys.
Intermetallics,2006,14(10/11):1114-1122
|
CSCD被引
40
次
|
|
|
|
4.
Wang J. Microstructure and tensile properties of Ti-48Al-2Cr-2Nb rods additively manufactured by selective electron beam melting.
JOM,2017,69(12):2751-2755
|
CSCD被引
6
次
|
|
|
|
5.
Bystrzanowski S. Creep behaviour and related high temperature microstructural stability of Ti-46Al-9Nb sheet material.
Intermetallics,2005,13(5):515-524
|
CSCD被引
11
次
|
|
|
|
6.
Dahar M S. Fatigue crack growth and fracture behavior of as-cast Ti-43.5Al-4Nb-1Mo-0.1B (TNM) compared to Ti-48Al-2Nb-2Cr (4822).
Intermetallics,2017,91:158-168
|
CSCD被引
1
次
|
|
|
|
7.
Tetsui T. Development of a second generation TiAl turbocharger.
Materials Science Forum,2007(561/565):379-382
|
CSCD被引
1
次
|
|
|
|
8.
Bewlay B P. TiAl alloys in commercial aircraft engines.
Materials at High Temperatures,2016,33(4/5):549-559
|
CSCD被引
61
次
|
|
|
|
9.
Biery N E. Influence of microstructure and strain distribution on failure properties in intermetallic TiAl-based alloys.
Materials Science and Engineering: A,2001(319/321):613-617
|
CSCD被引
1
次
|
|
|
|
10.
Debroy T. Additive manufacturing of metallic components-process, structure and properties.
Progress in Materials Science,2018,92:112-224
|
CSCD被引
273
次
|
|
|
|
11.
Kim J. The state of the art in the electron beam manufacturing processes.
International Journal of Precision Engineering and Manufacturing,2016,17(11):1575-1585
|
CSCD被引
4
次
|
|
|
|
12.
Korner C. Additive manufacturing of metallic components by selective electron beam melting-a review.
International Materials Reviews,2016,61(5):361-377
|
CSCD被引
35
次
|
|
|
|
13.
Yao Y. Solidification microstructure and tensile deformation mechanisms of selective electron beam melted Ni3Al-based alloy at room and elevated temperatures.
Materials Science and Engineering: A,2021,802:140629
|
CSCD被引
5
次
|
|
|
|
14.
Murr L E. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting.
Acta Materialia,2010,58(5):1887-1894
|
CSCD被引
32
次
|
|
|
|
15.
Chen Y. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting.
Materials Science and Engineering:A,2018,713:195-205
|
CSCD被引
4
次
|
|
|
|
16.
Yang G. Microstructures of asfabricated and post heat treated Ti-47Al-2Nb-2Cr alloy produced by selective electron beam melting (SEBM).
Rare Metal Materials and Engineering,2016,45(7):1683-1686
|
CSCD被引
1
次
|
|
|
|
17.
Chen Y. Selective electron beam melting of TiAl alloy: microstructure evolution, phase transformation and microhardness.
Materials Characterization,2018,142:584-592
|
CSCD被引
3
次
|
|
|
|
18.
Kan W. Microstructural degradation of Ti-45Al-8Nb alloy during the fabrication process by electron beam melting.
Jom,2017,69(12):2596-2601
|
CSCD被引
1
次
|
|
|
|
19.
Kan W. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting.
Journal of Alloys and Compounds,2019,809:1-32
|
CSCD被引
1
次
|
|
|
|
20.
Seifi M. Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb.
Journal of Alloys and Compounds,2017,729:1118-1135
|
CSCD被引
8
次
|
|
|
|
|