Dense RFB和LSTM遥感图像舰船目标检测
Ship detection in remote sensing image based on dense RFB and LSTM
查看参考文献29篇
文摘
|
针对当前遥感图像舰船目标检测精度不佳问题,本文构建舰船目标数据集STAR,提出基于Dense RFB和LSTM多尺度舰船目标检测算法。该算法首先在SSD网络基础上设计了浅层特征增强模块,基于人眼视点图采用Dense RFB特征复用和膨胀卷积增大感受野的尺度和种类,增强浅层网络对细节特征的提取能力;其次设计了深层多尺度特征金字塔融合模块,采用FPN和LSTM思想,基于反卷积和残差网络对深层不同尺度特征进行融合,增强网络结构非线性和特征层的表征能力;最后加入聚焦分类损失函数进行联合训练,有效避免了正负样本失衡问题。在遥感图像舰船数据集上实验,本文所提舰船目标检测算法精度均值达到81.98%,检测速度达到29.6帧/s。此外,遥感图像中成像模糊、被遮挡、部分被裁剪等舰船目标的检测效果也优于原有经典算法,实验结果表明该算法对遥感图像舰船目标检测的泛化能力较强,有效地提高了遥感图像舰船目标检测的精度。 |
其他语种文摘
|
Ship detection plays a crucial role in various applications and has drawn increasing attention in recent years. Deep learning methods based on CNNs, particularly SSD, have greatly improved detection performance due to their highly efficient feature extraction capability. However, SSD still has two problems. For instance, the detection network of arbitrarily arranged ship targets lacks a connection between high and low-level features and ignores contextual semantic information. Another problem is that natural factors such as light and clouds affect remote sensing images, thus ship detection may cause an imbalance of positive and negative samples. Aiming at solving the above issues, this paper proposes to achieve ship detection in remote sensing images by using a method based on Dense RFB and LSTM. This proposed method includes three elements. First, to enhance the detail feature extraction capability, this proposed method introduces a shallow feature enhancement module. This module draws on the idea of the human viewpoint, which uses Dense RFB feature reuse and expansion convolution to increase the receptive field. Second, to effectively extract deep semantic information and enhance the expressive ability of the network feature layer, a deep multi-scale feature pyramid fusion module (MFPF)is designed, as this proposed method draws on FPN and LSTM deconvolution and residual structure fuse deep multi-scale features. Finally, to solve the imbalance of positive and negative samples, the focal classification loss function is added, improving the accuracy of ship detection during training. The experiments were carried out on an optical remote sensing image dataset, in which only the ship dataset was used for training, validation, and testing. Results indicate that the proposed algorithm achieved an Average Precision (AP)of 81.98% and the detection speed reached 29.6 fps for ship targets, in which most ships were detected successfully. Moreover, for blurred, occluded, and partially-cropped ship targets, the algorithm's detection effect is better than the traditional algorithm. Qualitative and quantitative results indicate that the generalization capability of the proposed method enhances ship detection. From this paper, we can draw three conclusions: (1)The proposed method can improve the extraction of detailed features and increase the receptive fields. (2)The focal loss function method shows good generalization capability. (3)The rotating box detection method is suitable for multi-scale and densely-arranged remote sensing images. |
来源
|
遥感学报
,2022,26(9):1859-1871 【核心库】
|
DOI
|
10.11834/jrs.20211042
|
关键词
|
舰船目标检测
;
Dense RFB
;
特征金字塔
;
LSTM
;
多尺度特征
|
地址
|
1.
火箭军工程大学导弹工程学院, 西安, 710025
2.
中国科学院西安光学精密机械研究所, 西安, 710068
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-4619 |
学科
|
社会科学总论;自动化技术、计算机技术;水路运输 |
基金
|
国家自然科学基金
;
中国航空科学基金
;
陕西省自然科学基金
|
文献收藏号
|
CSCD:7320972
|
参考文献 共
29
共2页
|
1.
Cao G M. Feature-fused SSD: fast detection for small objects.
Proceedings of SPIE 10615, Ninth International Conference on Graphic and Image Processing,2018:106151E
|
CSCD被引
2
次
|
|
|
|
2.
董超.
可见光遥感图像海面舰船目标检测技术研究,2020
|
CSCD被引
2
次
|
|
|
|
3.
郭威.
基于深度学习的光学遥感图像自动舰船检测,2019:15-20
|
CSCD被引
1
次
|
|
|
|
4.
He K M. Deep residual learning for image recognition.
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778
|
CSCD被引
305
次
|
|
|
|
5.
Krizhevsky A. ImageNet classification with deep convolutional neural networks.
Communications of the ACM,2017,60(6):84-90
|
CSCD被引
3320
次
|
|
|
|
6.
李晖晖. 基于CReLU和FPN改进的SSD舰船目标检测.
仪器仪表学报,2020,41(4):183-190
|
CSCD被引
24
次
|
|
|
|
7.
Lin T Y. Feature pyramid networks for object detection.
2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:936-944
|
CSCD被引
130
次
|
|
|
|
8.
Lin T Y. Focal loss for dense object detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327
|
CSCD被引
566
次
|
|
|
|
9.
Liu S T. Receptive field block net for accurate and fast object detection.
15th European Conference on Computer Vision,2018:385-400
|
CSCD被引
1
次
|
|
|
|
10.
Liu W. SSD: single shot MultiBox detector.
14th European Conference on Computer Vision,2016:21-27
|
CSCD被引
101
次
|
|
|
|
11.
罗会兰. 基于深度学习的目标检测研究综述.
电子学报,2020,48(6):1230-1239
|
CSCD被引
65
次
|
|
|
|
12.
马健. 基于特征融合SSD的遥感图像舰船目标检测.
计算机应用,2019,39(S2):253-256
|
CSCD被引
5
次
|
|
|
|
13.
Redmon J. You only look once: unified, real-time object detection.
2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788
|
CSCD被引
219
次
|
|
|
|
14.
Ren S Q. Faster R-CNN: towards real-time object detection with region proposal networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149
|
CSCD被引
4540
次
|
|
|
|
15.
史文旭. 基于特征融合的遥感图像舰船目标检测方法.
光子学报,2020,49(7):57-67
|
CSCD被引
5
次
|
|
|
|
16.
史文旭. 特征增强SSD算法及其在遥感目标检测中的应用.
光子学报,2020,49(1):154-163
|
CSCD被引
11
次
|
|
|
|
17.
王伦文. 光学遥感图像目标检测方法.
系统工程与电子技术,2019,41(10):2163-2169
|
CSCD被引
3
次
|
|
|
|
18.
王玺坤. 基于改进型YOLO算法的遥感图像舰船检测.
北京航空航天大学学报,2020,46(6):1184-1191
|
CSCD被引
17
次
|
|
|
|
19.
谢学立. 基于动态感受野的航拍图像目标检测算法.
光学学报,2020,40(4):107-119
|
CSCD被引
2
次
|
|
|
|
20.
于野. A-FPN算法及其在遥感图像船舶检测中的应用.
遥感学报,2020,24(2):107-115
|
CSCD被引
14
次
|
|
|
|
|