激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状
Research status of crack inhibition viagrain refinement of high-strength aluminum alloys fabricated by selective laser melting
查看参考文献99篇
文摘
|
高强铝合金(2×××,7×××等)因具有比强度高、加工性好等优点而被航空航天、汽车等领域广泛应用。随着大推重比飞行器设计及汽车轻量化技术的发展,轻质结构材料的需求日益增加,同时零部件也面临着“薄壁化、中空化、复合化”的发展趋势,高强铝合金的传统加工方法越来越难以满足要求。近年来,激光选区熔化成形(selective laser melting,SLM)作为一种常见的金属增材制造技术(additive manufacturing,AM)在复杂零部件成形领域受到关注,有望成为进一步拓宽高强铝合金应用领域的新兴技术。然而,SLM成形高强铝合金因易产生周期性热裂纹和粗大柱状晶不良组织等问题而发展缓慢,晶粒细化是克服增材制造高强铝合金这一固有热裂问题的关键所在。本文综述了近年来SLM成形高强铝合金显微组织和力学性能调控等方面的研究进展,归纳了不同体系合金的力学性能,重点阐述了抑制SLM成形高强铝合金中热裂纹形成的主要策略,包括SLM工艺参数优化以及通过微合金化或添加纳米颗粒细化晶粒等方法。指出当前研究存在的主要问题是合金成分的改变对材料综合性能以及热处理制度的影响规律尚不清晰等,并展望了未来的发展趋势,如SLM成形新型高强铝合金成分设计与综合性能评价、利用后处理工艺等手段进一步提升合金综合性能以及专用晶粒细化剂的设计与细化机制探究等。 |
其他语种文摘
|
High-strength aluminum alloys(2×××and 7×××,etc.)are widely used in aerospace, automobile and other fields because of their high specific strength and good machinability.With the development of high thrust-weight ratio engine and automobile lightweight technology,the demand for lightweight structural materials is increasing.Meanwhile,parts also present the“thin-walled, hollow and composite”tendency gradually,and the traditional processing methods of high-strength aluminum alloy are increasingly difficult to meet the requirements.As a common metal additive manufacturing(AM)technology,selective laser melting(SLM)is a great potential manufacturing technology for complex parts.SLM is expected to become an emerging technology to expand the application of high-strength aluminum alloys.However,due to their poor casting and welding properties,high-strength aluminum alloys easily produce the periodic hot cracks and coarse columnar grains during SLM,leading to unsatisfactory mechanical properties.Grain refinement is the key to overcome the inherent hot-tearing crack of SLMed high-strength aluminum alloys.The research progress in microstructure and mechanical property control of SLMed high-strength aluminum alloys in recent years was reviewed.The mechanical properties of alloys with different compositions were summarized.Importantly,the main strategies to suppress hot-crack formation in SLMed highstrength aluminum alloys were highlighted,including optimization of SLM process parameters and grain refinement by microalloying or addition of nanoparticles.It was pointed out that the main issue of SLMed high-strength aluminum alloys was the change of alloy composition on the comprehensive properties and heat treatment process was still unclear.The development trends were forecasted,such as designing new high-strength aluminum alloys and evaluating their comprehensive performances, using post-treatment process and other means to further improve the comprehensive performances of the alloys,and designing special grain refiners for SLM and investigating refinement mechanism. |
来源
|
材料工程
,2022,50(8):1-16 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000160
|
关键词
|
高强铝合金
;
激光选区熔化
;
晶粒细化
;
热裂纹
;
增材制造
|
地址
|
华南理工大学, 国家金属材料近净成形工程技术研究中心, 广州, 510641
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
广东省重点领域研发计划项目
;
广东省科技计划项目
|
文献收藏号
|
CSCD:7308140
|
参考文献 共
99
共5页
|
1.
Martin J H. 3D printing of high-strength aluminium alloys.
Nature,2017,549(7672):365-369
|
CSCD被引
228
次
|
|
|
|
2.
Zhang J. A review of selective laser melting of aluminum alloys: Processing,microstructure, property and developing trends.
Journal of Materials Science & Technology,2019,35(2):270-284
|
CSCD被引
126
次
|
|
|
|
3.
Amato K N. Microstructures and mechanical behavior of Inconel 718fabricated by selective laser melting.
Acta Materialia,2012,60(5):2229-2239
|
CSCD被引
63
次
|
|
|
|
4.
Pleass C. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625fabricated by selective laser melting.
Additive Manufacturing,2018,24:419-431
|
CSCD被引
12
次
|
|
|
|
5.
Xu W. Additive manufacturing of strong and ductile Ti-6Al-4Vby selective laser melting via in situ martensite decomposition.
Acta Materialia,2015,85:74-84
|
CSCD被引
92
次
|
|
|
|
6.
Bertsch K M. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L.
Acta Materialia,2020,199:19-33
|
CSCD被引
29
次
|
|
|
|
7.
Saini J S. Mechanical properties of selective laser melted CoCr alloys:a review.
Journal of Materials Engineering and Performance,2021,30(12):8700-8714
|
CSCD被引
1
次
|
|
|
|
8.
朱海红. 高强铝合金的激光选区熔化成形研究现状.
激光与光电子学进展,2018,55(1):22-28
|
CSCD被引
6
次
|
|
|
|
9.
Easton M. Grain refinement and hot tearing of aluminium alloys-how to optimise and minimise.
Materials Science Forum,2010,630:213-221
|
CSCD被引
2
次
|
|
|
|
10.
Sing S L. Laser and electron-beam powder-bed additive manufacturing of metallic implants:a review on processes,materials and designs.
Journal of Orthopaedic Research,2016,34(3):369-385
|
CSCD被引
51
次
|
|
|
|
11.
Debroy T. Additive manufacturing of metallic components-process,structure and properties.
Progress in Materials Science,2018,92:112-224
|
CSCD被引
350
次
|
|
|
|
12.
Liu X H. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder b e d fusion using a synergistic grain-refining strategy.
Journal of Materials Science & Technology,2022,124:41-52
|
CSCD被引
5
次
|
|
|
|
13.
Kurz W. Columnar to equiaxed transition in solidication processing.
Science and Technology of Advanced Materials,2001,2:185-191
|
CSCD被引
44
次
|
|
|
|
14.
Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic.
Materials Science and Engineering,1984,65(1):75-83
|
CSCD被引
147
次
|
|
|
|
15.
Wang P. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting.
Transactions of Nonferrous Metals Society of China,2020,30(8):2001-2034
|
CSCD被引
36
次
|
|
|
|
16.
Gaumann M. Epitaxial laser metal forming:analysis of microstructure formation.
Materials Science and Engineering:A,1999,271(1/2):232-241
|
CSCD被引
91
次
|
|
|
|
17.
Kotadia H R. A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties.
Additive Manufacturing,2021,46:102155
|
CSCD被引
24
次
|
|
|
|
18.
Wang C. Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy.
Journal of Materials Science &Technology,2011,27(7):668-672
|
CSCD被引
12
次
|
|
|
|
19.
Thijs L. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder.
Acta Materialia,2013,61(5):1809-1819
|
CSCD被引
132
次
|
|
|
|
20.
Cam G. Recent developments in friction stir welding of Al-alloys.
Journal of Materials Engineering and Performance,2014,23(6):1936-1953
|
CSCD被引
31
次
|
|
|
|
|