1 064 nm激光高反膜残余应力及其形变分析
Residual Stress and Deformation of 1 064 nm High Reflection Films for Laser Systems
查看参考文献26篇
文摘
|
目的由于光学薄膜自身的残余应力,致使镀膜前后基底面型变化较大。针对这一问题,本文制备单层膜和激光高反膜,明确单层膜应力机制,以此研究不同膜系高反膜的应力情况及其面型变化,通过增加压应力补偿层减小面型变化,为制备微变型激光高反镜提供方法。方法从理论上分析单层膜残余应力机制,采用等效参考温度的方法代替光学薄膜本征应力的效果,通过仿真方法得到薄膜的本征应力。使用有限元分析和试验方法研究激光高反膜的残余应力情况。以单层膜试验为依据,使用等效参考温度、生死单元和载荷步技术,仿真分析多层膜-基系统的残余应力分布及其面型变化。采用电子束热蒸发技术制备不同的高反膜,通过Zygo激光干涉仪测试其镀膜前后的面型,分析基底初始面型、膜料和膜系对高反镜面型的影响。结果仿真发现,多层膜-基系统残余应力呈现层状分布,从基底到膜层由拉应力变为压应力,再由压应力变为拉应力。在残余应力作用下,整个多层膜-基系统呈凹形,位移呈环状分布。对于TiO_2/SiO_2组合,通过分析对比不同膜系下对应每一层膜层的残余应力及其对整体面型的影响,发现膜系G│(HL)~(10)H_2L│A比G│(HL)~(10)H│A面型的变化更小。试验发现,通过增加压应力补偿层使得高反膜的残余应力减小,高反镜(熔石英基底,ϕ30 mm×2 mm)的面型基本没有变化(ΔPV=0.004λ),这与仿真结果一致。结论熔石英基底上TiO_2、HfO_2、H_4和SiO_2的本征应力在残余应力中起主导作用,TiO_2、HfO_2和H_4一般表现为拉应力, SiO_2表现为压应力。不同膜料组合的高反膜体系均表现为压应力。膜系G│(HL)~(10)H_2L│A比G│(HL)~(10)H│ A残余应力和面型变化更小,其残余应力为-39.70 MPa,比不加补偿层减小了22.26 MPa,面型基本没有变化。当加2L应力补偿层时,在满足光谱特性的基础上可以平衡多层膜整体残余应力。 |
其他语种文摘
|
The large surface shape change on the substrate after coating is due to the residual stress of the optical films. It presents a challenge for coating optical elements with high precision surface shape. The work aims to study the residual stress mechanism and surface profile shape change of monolayer films and laser high reflection films with different films on substrate. The surface shape change of the substrate is reduced by adding a compressive stress compensation layer on the outermost layer of the multilayer films. It provides a method for preparing micro-deformation laser high reflection mirrors. The residual stress mechanism of monolayer film is analyzed by the theory of thermal stress and residual stress in optical films. The equivalent reference temperature is used to replace the intrinsic stress of optical thin films, and the intrinsic stress of optical thin films is obtained by simulation. The residual stress distribution and surface shape change of laser high reflection films-substrate system is studied by finite element analysis and experiments. Based on the stress of monolayer film, the residual stress distribution and surface profile change of high reflection films-substrate system is simulated and analyzed by equivalent reference temperature, birth and death element and load step technology. Different high reflection films are prepared by thermal evaporation of electron beam. The effects of initial substrate surface profile, films material and films combinations on high reflection films-substrate system are analyzed via testing surface profile changes of it, using Zygo laser interferometer. The simulation results show that the residual stress of high reflection films-substrate system is layered. It changes from tensile stress to compressive stress and then to tensile stress in the direction from the substrate to films. The surface profile of high reflective films-substrate system is concave and the Z-axis displacement is distributed annularly due to residual stress. By analyzing the influence of monolayer film on the substrate surface shape and comparing the residual stress value of each film layer in different high reflective films systems, it is found that the surface profile change of G│(HL)~(10)H_2L│A is smaller than G│(HL)~(10)H│A with TiO_2/SiO_2. The surface profile of substrate with high reflective films (fused silica substrate, ϕ30×2 mm) is basically unchanged (ΔPV=0.004λ) because the residual stress of films reduced by adding a compressive stress compensation layer, which is consistent with the simulation results. On the fused silica substrate, the intrinsic stress of TiO_2, HfO_2, H_4 and SiO_2 plays a leading role in the residual stress. The residual stress of TiO_2, HfO_2, H_4 is tensile on the fused silica substrate while the SiO_2 is compressive. All the high reflection films systems with different material combinations show compressive. For TiO_2/SiO_2, the films-substrate system G│(HL)~(10)H_2L│A is smaller than G│(HL)~(10)H│A in residual stress of optical films and the change of surface shape on substrate. Its residual stress value is-39.70 MPa, which is 22.26 MPa less than that without stress compensation layer. Its surface shape has basically not changed. The addition of 2L (stress compensation layer) balances the residual stress of the multilayer films-substrate system without affecting the spectral characteristics. |
来源
|
表面技术
,2022,51(9):311-318,334 【核心库】
|
DOI
|
10.16490/j.cnki.issn.1001-3660.2022.09.032
|
关键词
|
多层膜
;
残余应力
;
等效参考温度
;
生死单元
;
应力补偿层
;
面型
|
地址
|
1.
西安工业大学, 陕西省薄膜技术与光学检测重点实验室, 西安, 710021
2.
中国科学院西安光学精密机械研究所先进光学制造技术联合实验室, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-3660 |
学科
|
物理学 |
基金
|
陕西省国际科技合作与交流计划资助项目
;
西安市智能探视感知重点实验室项目
|
文献收藏号
|
CSCD:7308129
|
参考文献 共
26
共2页
|
1.
Bouillet S. Large Optics Metrology for High-Power Lasers.
Journal of the Optical Society of America A, Optics, Image Science, and Vision,2019,36(11):C95-C103
|
CSCD被引
1
次
|
|
|
|
2.
Jiang Shaoen. Experimental Progress of Inertial Confinement Fusion Based at the ShenGuang-III Laser Facility in China.
Nuclear Fusion,2019,59(3):032006
|
CSCD被引
14
次
|
|
|
|
3.
吴德兴.
高精度平面反射镜的制作方法研究,2014
|
CSCD被引
1
次
|
|
|
|
4.
Long Guoyun. Deposition of High Reflective Films on Deformable Mirror for High Power Laser System.
Optical Engineering,2020,59:057103
|
CSCD被引
3
次
|
|
|
|
5.
Kumar S. Laser-Induced Damage Threshold Study on TiO_2/SiO_2 Multilayer Reflective Coatings.
Indian Journal of Physics,2020,94(1):105-115
|
CSCD被引
3
次
|
|
|
|
6.
Ma Ping. Correlation between Defect Absorption and Nano-Second Laser-Induced Damage of HfO_2/SiO_2 Based High Reflective Coatings at 1064 nm.
Thin Solid Films,2019,669:404-409
|
CSCD被引
1
次
|
|
|
|
7.
Depla D. Quantitative Correlation between Intrinsic Stress and Microstructure of Thin Films.
Thin Solid Films,2016,604:90-93
|
CSCD被引
1
次
|
|
|
|
8.
Cemin F. Benefits of Energetic Ion Bombardment for Tailoring Stress and Microstructural Evolution during Growth of Cu Thin Films.
Acta Materialia,2017,141:120-130
|
CSCD被引
3
次
|
|
|
|
9.
胡江川. 高反射镜膜层应力耦合研究.
红外与激光工程,2011,40(12):2447-2450
|
CSCD被引
2
次
|
|
|
|
10.
Mcdonald I G. Residual Stresses in Cu/Ni Multilayer Thin Films Measured Using the Sin 2ψ Method.
Experimental Mechanics,2019,59(1):111-120
|
CSCD被引
1
次
|
|
|
|
11.
Jena S. Influence of Oxygen Partial Pressure on Microstructure, Optical Properties, Residual Stress and Laser Induced Damage Threshold of Amorphous HfO_2 Thin Films.
Journal of Alloys and Compounds,2019,771:373-381
|
CSCD被引
3
次
|
|
|
|
12.
Khazaal H F. The Impact of Ion-Beam Parameters on the Characteristics of Nb_2O_5 Thin Films.
Surfaces and Interfaces,2020,20:100593
|
CSCD被引
1
次
|
|
|
|
13.
Shen Jienan. Effects of Annealing Parameters on Residual Stress and Piezoelectric Performance of ZnO Thin Films Studied by X-Ray Diffraction and Atomic Force Microscopy.
Journal of Applied Crystallography,2019,52(5):951-959
|
CSCD被引
1
次
|
|
|
|
14.
Wang I J. Tuning Stress in Cu Thin Films by Developing Highly (111)-Oriented Nanotwinned Structure.
Journal of Electronic Materials,2020,49(1):109-115
|
CSCD被引
1
次
|
|
|
|
15.
Hsiao S N. Influence of Pressure on (0 0 1)-Preferred Orientation and In-Plane Residual Stress in Rapidly Annealed FePt Thin Films.
Applied Surface Science,2020,509:145304
|
CSCD被引
1
次
|
|
|
|
16.
蒋丽媛. 多层红外光学薄膜的热应力分析.
红外,2018,39(5):20-24
|
CSCD被引
4
次
|
|
|
|
17.
李长安. 多层薄膜沉积的应力仿真分析.
激光与光电子学进展,2018,55(4):410-414
|
CSCD被引
2
次
|
|
|
|
18.
Milton O.
Materials Science of Thin Films. Second edition,2013:436-439
|
CSCD被引
1
次
|
|
|
|
19.
曹建章.
薄膜光学与薄膜技术基础,2014:368-370
|
CSCD被引
1
次
|
|
|
|
20.
张丽莎. 氧分压对HfO_2薄膜残余应力的影响及有限元分析.
强激光与粒子束,2008,20(6):894-898
|
CSCD被引
3
次
|
|
|
|
|