芯子间距对激光选区熔化成形AlSi10Mg点阵夹芯板弯曲性能的影响
Influence of core spacing on bending properties of AlSi10Mg lattice sandwich panel formed by selective laser melting
查看参考文献16篇
文摘
|
激光选区熔化(selective laser melting, SLM)成形的轻质高刚度金属点阵夹芯结构在航空航天、军工等领域具有重要的应用前景。通过有限元分析(finite element analysis, FEA)和理论方法分析不同芯子间距和芯子排列方向的正方形点阵夹芯板在三点弯曲下的响应,并通过激光选区熔化成形的实验样品对仿真结果进行验证。结果表明:当芯子间距在一定范围内时,芯子间距与柱面弯曲刚度呈现线性关系;当相对密度在一定范围内时,0°正方形点阵夹芯板和45°正方形点阵夹芯板在相同相对密度下的柱面弯曲刚度基本一致;随着芯子间距的增大,应力集中区域由压头下的面板转移到芯子的两端;根据应力分布状态可提出三点弯曲下载荷-挠度曲线的屈服和稳定塑性变形阶段初始载荷预测公式;实验与仿真结果吻合度较高,表明能够通过有限元分析对点阵夹芯板三点弯曲变形和力学性能进行有效预测。 |
其他语种文摘
|
The light-weight and high-stiffness metal lattice sandwich structure formed by selective laser melting has an important application prospect in aerospace, military and other fields. In this study, the response of square lattice sandwich panels with different core spacings under three-point bending was analyzed by finite element analysis, and the results were verified by experimental samples formed by selective laser melting. The results show that there is a linear relationship between the core spacing and cylindrical bending stiffness when the core spacing is within a certain range, the influence of core spacing on cylindrical bending stiffness is very significant and the influence of core spacing on the cylindrical bending stiffness of the square lattice sandwich panel of 45° is greater than that of the square lattice sandwich panel of 0°. The cylindrical bending stiffness of square lattice sandwich panel of 0° and 45° is basically the same under the same relative density when the relative density is within a certain range, which means that they have similar cylindrical bending stiffness under the same weight. When the relative density is less than 5%, the relative density has a significant influence on the cylindrical bending stiffness, and the influence decreases when the relative density exceeds 5%. With the increase of the core spacing, the stress concentration area is transferred from the part of panel under the loading pad to the ends of cores between the support pads due to the reduction of the cylindrical bending resistance of the lattice structure. According to the mechanical analysis, the initial load prediction formula for the yield and plastic stages can be proposed, The comparison between the theoretical results and the FEA results shows that the relative error is less than 13.6%, indicating that the formula is relatively accurate. The experimental results are in good agreement with the FEA results, especially for the cylindrical bending stiffness, the relative error between the FEA value and the experimental value is only less than 6.5%, indicating that the three-point bending deformation and mechanical properties of the lattice sandwich panel can be effectively predicted by FEA. |
来源
|
航空材料学报
,2022,42(4):65-74 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000198
|
关键词
|
点阵夹芯板
;
激光选区熔化
;
有限元分析
;
弯曲性能
|
地址
|
1.
四川大学机械工程学院, 成都, 610065
2.
中国工程物理研究院机械制造工艺研究所, 四川, 绵阳, 621900
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金委员会-中国工程物理研究院“NSAF联合基金”
|
文献收藏号
|
CSCD:7304060
|
参考文献 共
16
共1页
|
1.
王东炜.
轻质点阵夹芯结构的声学性能研究,2020
|
CSCD被引
2
次
|
|
|
|
2.
Zhang R P. Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts.
Continuum Mechanics & Thermodynamics,2016,28(6):1-20
|
CSCD被引
2
次
|
|
|
|
3.
左朝权.
K418合金Kagome点阵夹芯结构热性能和力学性能研究,2020
|
CSCD被引
1
次
|
|
|
|
4.
张振华. 六层金字塔点阵夹芯板结构在水下近距爆炸载荷下的冲击实验.
中国舰船研究,2016,11(4):51-58
|
CSCD被引
7
次
|
|
|
|
5.
亓昌. 金字塔型点阵材料夹芯板抗爆性能仿真与优化.
振动与冲击,2019,38(16):245-252
|
CSCD被引
6
次
|
|
|
|
6.
Mohan G. Impact resistance of lightweight hybrid structures for gas turbine engine fan containment applications.
Journal of Materials Engineering and Performance,2003,12(4):470-479
|
CSCD被引
3
次
|
|
|
|
7.
曾涛. C/SiC陶瓷基梯度点阵复合材料结构传热性能.
哈尔滨理工大学学报,2017,22(4):129-134
|
CSCD被引
4
次
|
|
|
|
8.
杨永强. 金属零件激光选区熔化技术的现状及进展.
激光与光电子学进展,2018,55(1):9-21
|
CSCD被引
34
次
|
|
|
|
9.
Gibson L J.
Cellular solids: structures and properties,1997
|
CSCD被引
262
次
|
|
|
|
10.
Su P B. Three-point bending of honeycomb sandwich beams with facesheet perforations.
Acta Mechanica Sinica,2018,34(4):667-675
|
CSCD被引
2
次
|
|
|
|
11.
Li S G. Bending performance of a jute fiber and epoxy resin composite sandwich structure with a bi-directional corrugated truss core.
Fibers and Polymers,2019,20(10):2166-2174
|
CSCD被引
2
次
|
|
|
|
12.
Liu Z B. Mechanical performances of metal-polymer sandwich structures with 3Dprinted lattice cores subjected to bending load.
Archives of Civil and Mechanical Engineering,2020,20(3):1-17
|
CSCD被引
3
次
|
|
|
|
13.
王健.
激光增材制造点阵结构力学性能研究,2016
|
CSCD被引
3
次
|
|
|
|
14.
吴林志.
复合材料点阵结构力学性能表征,2015
|
CSCD被引
4
次
|
|
|
|
15.
孙亚东. 泡沫钢的制备及三点弯曲性能.
航空材料学报,2017,37(4):77-83
|
CSCD被引
2
次
|
|
|
|
16.
郑权. 基于增材制造的多层金字塔点阵夹芯板抗压缩性能.
航空材料学报,2018,38(3):77-82
|
CSCD被引
7
次
|
|
|
|
|