贵州三穗铀矿床矿石矿物学特征及其对找矿的指示
Ore mineralogical characteristics of Sansui uranium deposit in Guizhou Province,China and indication for prospecting
查看参考文献67篇
文摘
|
三穗铀矿床位于黔中-湘西北铀成矿带内,产于震旦-寒武系老堡组炭质泥岩中,是贵州省近年勘查发现的第一个大型铀矿床。[研究目的]鉴于黔东地区铀矿成矿规律、富集机理及矿石矿物学等研究程度低,查明典型铀矿床矿石矿物组合及化学组分,探讨成矿环境,揭示成矿过程,深化成矿理论认识,将为促进区域成矿预测、扩大找矿勘查成果及丰富该类型铀矿成矿理论提供科学依据。[研究方法]基于三穗铀矿床地质、地球化学特征,通过电子探针、扫描电镜等测试,分析了铀成矿机理及成岩成矿的环境演化。[研究结果]本区含铀岩系老堡组形成于震旦纪/寒武纪转折期的陆缘裂谷和陆缘裂陷缺氧还原环境,铀成矿初始物源与海底火山活动有关;铀矿石主要由铀矿物、铁矿物、黏土矿物、有机质及白云石、石英(或玉髓)、重晶石、方解石等组成,呈微晶-隐晶结构、微晶-粉晶晶粒状结构,层状、纹层状构造;铀矿物丰富,主要有沥青铀矿、硅钙铀矿、硒铅铀矿、钛铀矿、磷铀矿及水碳铀等,以纳米-微米级粒状、柱状(粒径多<10 μm)、细脉状、或隐晶质形式赋存于有机质、铁质、黏土矿物等聚铀矿物中。[结论]三穗铀矿床形成物源具有多源性,与雪峰期海底火山作用带来部分成矿物质、燕山-喜马拉雅期成矿流体在运移的途中不断浸取地层内的成矿物质密切相关,经历了铀初始富集、氧化淋滤及热液叠加再富集过程,成因属典型的碳硅泥岩型。三穗铀矿床中发现大量铀矿物显示,铀富集程度高、成矿作用强,找矿远景好、潜力大。 |
其他语种文摘
|
This paper is the result of mineral exploration engineering.The Sansui deposit is located in the uranium metallogenic belt between central Guizhou and northwest Hunan Province.It is the first large uranium deposit discovered in Guizhou Province in recent years.The uranium deposit situates in the carbonaceous mudstone of Laobao Formation of Sinian-Cambrian and is stratified and like stratified.[Objective]The purpose of this paper is to find out the ore and mineral composition of Sansui uranium deposit,explore the uranium mineralization environment,reveal the mineralization process of uranium initial enrichment,leaching,superposition and re-enrichment,and provide new information for regional metallogenic prediction,ore exploration and enrichment of this type of uranium ore-forming theory.[Methods]The study on mineral mineralogy and geological characteristics of ore deposits shows that [Results] (1) The Laobao Formation of uraniumbearing rocks was formed in the anoxic reduction environment of the continental margin rift and continental margin rifting during the Sinian/Cambrian transitional period.(2) The uranium ore is mainly composed of uranium mineral,iron ore,clay mineral,organic matter,dolomite,quartz (or chalcedite),barite,calcite,etc.,with microcrystal-cryptocrystal structure,microcrystal-powder grain structure,layered and lamellar structure.(3) The uranium ore is rich in uranium minerals,mainly pitchblende,silica- calcined uranium ore,selenium- lead uranium ore,titanium- uranium ore,phosphorus uranium ore and water- carbon uranium,etc.They occur in the form of nano- micron granule,column (particle size <10 microns),veinlet,or in the form of cryptocrystalline occurrence in the organic matter,iron,clay minerals and other uranium minerals.(4) The constant element in the ore were enriched in SiO_2,CaO and LOI (burning loss),which was consistent with the rich silica,calcium and organic minerals.[Conclusions] The uranium source of the Sansui deposit was related to the submarine volcanic eruption,spillage during the Xuefeng period and the weathering and leaching of uranium-bearing geological bodies.Mineralization and its associated trace elements such as U,V,Mo,Cd,Se,Ni,Zn,etc.are significantly enriched,which is related to the fact that some ore-forming materials and ore-forming fluids are continuously leaching ore-forming materials in the strata during the process of submarine volcanic eruption and spill. |
来源
|
中国地质
,2022,49(4):1236-1249 【核心库】
|
DOI
|
10.12029/gc20220414
|
关键词
|
铀矿床
;
碳硅泥岩型
;
矿石矿物学
;
成矿环境
;
矿产勘查工程
;
三穗
;
贵州省
|
地址
|
1.
贵州省有色金属和核工业地质勘查局, 贵州, 贵阳, 550005
2.
贵州省有色金属和核工业地质勘查局核资源地质调查院, 贵州, 贵阳, 555005
3.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3657 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
贵州喀斯特科学研究中心联合项目
;
贵州省基础性公益性项目
|
文献收藏号
|
CSCD:7292859
|
参考文献 共
67
共4页
|
1.
贵州省有色和核工业地质局核资源地质调查院.
贵州省岑巩注溪-剑河南明铀矿整装勘查报告,2015
|
CSCD被引
1
次
|
|
|
|
2.
Algeo T J. Trace-element behavior and redox facies in core shale of upper Pennsylvanian Kansas-type cyclothems.
Chemical Geology,2004,206(3):289-318
|
CSCD被引
230
次
|
|
|
|
3.
Bostrom K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits.
Hydrothermal Processes at Seafloors Spreading Centers,1983:473-489
|
CSCD被引
11
次
|
|
|
|
4.
Bostrom K. Langban-an exhalative sedimentary deposits.
Economic Geology,1973,74(5):1002-1011
|
CSCD被引
42
次
|
|
|
|
5.
Bostrom K. The origin of aluminum-poor ferromanganese sediments in areas of high heart flow on the West Pacific Rise.
Marine Geology,1969,7:427-447
|
CSCD被引
109
次
|
|
|
|
6.
Douthitt C B. The geochemistry of the stable isotopes of silicon.
Geochimica et Cosmochimica Acta,1982,46(8):1449-1458
|
CSCD被引
60
次
|
|
|
|
7.
Hitzman M W. Classification, genesis, and exploration guides for nonsulfide zinc deposits.
Economic Geology,2003,98(4):685-714
|
CSCD被引
14
次
|
|
|
|
8.
Hu Ruizhong. The giant South China Mesozoic low-temperature metallogenic domain: Review and a new geodynamic model.
Journal of Asian Earth Sciences,2017,37:9-34
|
CSCD被引
84
次
|
|
|
|
9.
Hu Ruizhong. Multiple Mesozoic mineralization events in South China--An introduction to the thematic issue.
Mineralium Deposita,2012,47(6):579-588
|
CSCD被引
130
次
|
|
|
|
10.
Hu Ruizhong. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China: Evidence from He, Ar and C isotopes.
Chemical Geology,2009,266(1/2):86-95
|
CSCD被引
80
次
|
|
|
|
11.
Hu Ruizhong. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary.
Economic Geology,2008,103(3):583-598
|
CSCD被引
109
次
|
|
|
|
12.
Massey M S. Competing retention pathways of uranium upon reaction with Fe (II).
Geochimica et Cosmochimica Acta,2014,142(1):166-185
|
CSCD被引
6
次
|
|
|
|
13.
Pi Daohui. Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metals.
Precambrian Research,2013,225(1):218-229
|
CSCD被引
65
次
|
|
|
|
14.
Rawat T P S. Occurrence of proterozoic black shale-hosted uranium mineralisation in Tal Group, Sirmour district, Himachal Pradesh.
Journal of the Geological Society of India,2010,75:709-714
|
CSCD被引
3
次
|
|
|
|
15.
Rudnick R L.
Composition of the continental crust. 3,2003:1-64
|
CSCD被引
7
次
|
|
|
|
16.
Scott T B. Reduction of u (vi) to u(iv) on the surface of magnetite.
Geochimica et Cosmochimica Acta,2005,69(24):5639-5646
|
CSCD被引
8
次
|
|
|
|
17.
Sleep N H. Hotspots and mantle plumes: Some phenomenology.
Journal of Geophysical Research: Solid Earth,1990,95(B5):6715-6736
|
CSCD被引
18
次
|
|
|
|
18.
Wen Hanjie. Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China.
Geochimica et Cosmochimica Acta,2011,75:1411-1427
|
CSCD被引
17
次
|
|
|
|
19.
Wilkin R T. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions.
Geochimica et Cosmochimica Acta,1996,60:3897-3912
|
CSCD被引
149
次
|
|
|
|
20.
Wignall P B.
Black Shales,1994:1-46
|
CSCD被引
33
次
|
|
|
|
|