CoCrFeMnNi高熵合金冲击波响应与层裂强度的分子动力学研究
SHOCK WAVE RESPONSE AND SPALL STRENGTH IN CoCrFeMnNi HIGH-ENTROPY ALLOY:A MOLECULAR DYNAMICS STUDY
查看参考文献38篇
文摘
|
高熵合金未来有望应用于航空航天和深海探测等领域,并且不可避免地会受到极端冲击载荷作用,甚至会发生层裂.本文采用分子动力学(MD)方法,研究了CoCrFeMnNi单晶高熵合金冲击时的冲击波响应、层裂强度以及微观结构演化的取向相关性和冲击速度相关性.模拟结果表明,在沿[110]和[111]方向进行冲击时产生了弹塑性双波分离现象,且随着冲击速度的增加呈现出先增强后减弱的变化趋势,但在沿[100]方向冲击时未出现双波分离现象.在冲击过程中,大量无序结构产生且随冲击速度的增加而增加,使得层裂强度随冲击速度的增加而减小.此外,层裂强度也具有取向相关性.沿[100]方向冲击时产生了大量体心立方(BCC)中间相,抑制了层错以及无序结构的产生,使得[100]方向的层裂强度最高;层裂初期微孔洞形核区域无序结构含量大小关系的转变,使得[111]方向的层裂强度在冲击速度较低时(U_p≤0.9 km/s)大于[110]方向,而在冲击速度较大时(U_p≥1.2 km/s)略小于[111]方向.研究成果有望为CoCrFeMnNi高熵合金在极端冲击条件下的应用提供理论支撑和数据积累. |
其他语种文摘
|
High-entropy alloys are expected to be used in aerospace,deep-sea exploration and other fields in the future,and will inevitably be affected by extreme shock loading,even will occur spall fracture.In this work,the molecular dynamics (MD) method is used to study the orientation and shock velocity dependence of the shock wave response,spall strength and microstructure evolution of single-crystal CoCrFeMnNi high-entropy alloys.The simulation results show that the elastoplastic two-wave separation phenomenon occurs when the shocking along the [110] and [111] directions and shows a trend of first strengthening and then weakening with the increase of the shock velocity.However,there is no two-wave separation phenomenon when the shocking along the [100] direction.During the shocking process,a large number of disordered structures are generated and increase with the increase of the shock velocity,which makes the spall strength decreases with the increase of shock velocity.In addition,the spall strength also exhibits orientation dependence.A large number of body-centered cubic (BCC) intermediate phases are generated when the shocking along the [100] direction,which inhibits the generation of stacking faults and disordered structures,making the highest spall strength in the [100] direction;The transformation of the relationship of the content of disordered structure in the nucleation area of microvoids at the early stage of spallation,making the spall strength in the [111] direction is higher than that in the [110] direction when the shocking velocity is low (U_p≤0.9 km/s),and slightly lower than that in the [110] direction when the shocking velocity is large (U_p ≥1.2 km/s).The research results are expected to provide theoretical support and data accumulation for the application of CoCrFeMnNi high-entropy alloys under extreme shock conditions. |
来源
|
力学学报
,2022,54(8):2152-2160 【核心库】
|
DOI
|
10.6052/0459-1879-22-239
|
关键词
|
高熵合金
;
弹塑性双波分离
;
层裂强度
;
取向相关性
;
冲击速度相关性
;
分子动力学模拟
|
地址
|
1.
西南交通大学力学与航空航天学院, 成都, 610031
2.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
3.
华中科技大学航空航天学院, 武汉, 430074
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
;
非线性力学国家重点实验室开放基金(2022年)资助项目
|
文献收藏号
|
CSCD:7292451
|
参考文献 共
38
共2页
|
1.
Qiu J. Effects of pre-compression on the hardness of CoCrFeNiMn high entropy alloy based an asymmetrical yield criterion.
Journal of Alloys and Compounds,2019,802:93-102
|
CSCD被引
5
次
|
|
|
|
2.
Klimova M V. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys.
Journal of Alloys and Compounds,2019,811:152000
|
CSCD被引
13
次
|
|
|
|
3.
吕昭平. 高熵合金的变形行为及强韧化.
金属学报,2018,54(3):1553-1566
|
CSCD被引
55
次
|
|
|
|
4.
李建国. 高熵合金的力学性能及变形行为研究进展.
力学学报,2020,52(2):333-359
|
CSCD被引
26
次
|
|
|
|
5.
Su Z X. The effect of interstitial carbon atoms on defect evolution in high entropy alloys under helium irradiation.
Acta Materialia,2022,233:117955
|
CSCD被引
3
次
|
|
|
|
6.
Cantor B. Microstructural development in equiatomic multicomponent alloys.
Materials Science and Engineering A,2004,375/377:213-218
|
CSCD被引
599
次
|
|
|
|
7.
Bertin N. Frontiers in the Simulation of Dislocations.
Annual Review of Materials Research,2020,50(1):437-464
|
CSCD被引
5
次
|
|
|
|
8.
Jiang D D. Sudden change of spall strength induced by shock defects based on atomistic simulation of single crystal aluminum.
Scripta Materialia,2022,210:114474
|
CSCD被引
4
次
|
|
|
|
9.
Li W H. Defect reversibility regulates dynamic tensile strength in silicon carbide at high strain rates.
Scripta Materialia,2022,213:114593
|
CSCD被引
1
次
|
|
|
|
10.
Jian W R. Shock-induced amorphization in medium entropy alloy CoCrNi.
Scripta Materialia,2022,209:114379
|
CSCD被引
7
次
|
|
|
|
11.
Cekil H C. The behaviour of Boron Carbide under shock compression conditions: MD simulation results.
Computational Materials Science,2022,201:110872
|
CSCD被引
1
次
|
|
|
|
12.
Zhu Y. Molecular dynamics simulation on spallation of [111] Cu/Ni nano-multilayers: Voids evolution under different shock pulse duration.
Computational Materials Science,2022,202:110923
|
CSCD被引
1
次
|
|
|
|
13.
Xie Z C. Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi.
Acta Materialia,2021,221:117380
|
CSCD被引
8
次
|
|
|
|
14.
Thurmer D. Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations.
Journal of Alloys and Compounds,2022,895:162567
|
CSCD被引
3
次
|
|
|
|
15.
Plimpton S. Fast parallel algorithms for short-range molecular-dynamics.
Journal of Computational Physics,1995,117(1):1-19
|
CSCD被引
1154
次
|
|
|
|
16.
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool.
Modelling and Simulation in Materials Science and Engineering,2010,18(1):015012
|
CSCD被引
452
次
|
|
|
|
17.
Stukowski A. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data.
Modelling and Simulation in Materials Science and Engineering,2010,18(8):085001
|
CSCD被引
45
次
|
|
|
|
18.
Hirel P. Atomsk: A tool for manipulating and converting atomic data files.
Computer Physics Communications,2015,197:212-219
|
CSCD被引
54
次
|
|
|
|
19.
杜欣. 激光冲击下CoCrFeMnNi高熵合金微观塑性变形的分子动力学模拟.
力学学报,2021,53(12):3331-3340
|
CSCD被引
5
次
|
|
|
|
20.
Choi W M. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study.
NPJ Computational Materials,2018,4(1):1-9
|
CSCD被引
23
次
|
|
|
|
|