帮助 关于我们

返回检索结果

CoCrFeMnNi高熵合金冲击波响应与层裂强度的分子动力学研究
SHOCK WAVE RESPONSE AND SPALL STRENGTH IN CoCrFeMnNi HIGH-ENTROPY ALLOY:A MOLECULAR DYNAMICS STUDY

查看参考文献38篇

杜欣 1   袁福平 2   熊启林 3   张波 1   阚前华 1   张旭 1  
文摘 高熵合金未来有望应用于航空航天和深海探测等领域,并且不可避免地会受到极端冲击载荷作用,甚至会发生层裂.本文采用分子动力学(MD)方法,研究了CoCrFeMnNi单晶高熵合金冲击时的冲击波响应、层裂强度以及微观结构演化的取向相关性和冲击速度相关性.模拟结果表明,在沿[110]和[111]方向进行冲击时产生了弹塑性双波分离现象,且随着冲击速度的增加呈现出先增强后减弱的变化趋势,但在沿[100]方向冲击时未出现双波分离现象.在冲击过程中,大量无序结构产生且随冲击速度的增加而增加,使得层裂强度随冲击速度的增加而减小.此外,层裂强度也具有取向相关性.沿[100]方向冲击时产生了大量体心立方(BCC)中间相,抑制了层错以及无序结构的产生,使得[100]方向的层裂强度最高;层裂初期微孔洞形核区域无序结构含量大小关系的转变,使得[111]方向的层裂强度在冲击速度较低时(U_p≤0.9 km/s)大于[110]方向,而在冲击速度较大时(U_p≥1.2 km/s)略小于[111]方向.研究成果有望为CoCrFeMnNi高熵合金在极端冲击条件下的应用提供理论支撑和数据积累.
其他语种文摘 High-entropy alloys are expected to be used in aerospace,deep-sea exploration and other fields in the future,and will inevitably be affected by extreme shock loading,even will occur spall fracture.In this work,the molecular dynamics (MD) method is used to study the orientation and shock velocity dependence of the shock wave response,spall strength and microstructure evolution of single-crystal CoCrFeMnNi high-entropy alloys.The simulation results show that the elastoplastic two-wave separation phenomenon occurs when the shocking along the [110] and [111] directions and shows a trend of first strengthening and then weakening with the increase of the shock velocity.However,there is no two-wave separation phenomenon when the shocking along the [100] direction.During the shocking process,a large number of disordered structures are generated and increase with the increase of the shock velocity,which makes the spall strength decreases with the increase of shock velocity.In addition,the spall strength also exhibits orientation dependence.A large number of body-centered cubic (BCC) intermediate phases are generated when the shocking along the [100] direction,which inhibits the generation of stacking faults and disordered structures,making the highest spall strength in the [100] direction;The transformation of the relationship of the content of disordered structure in the nucleation area of microvoids at the early stage of spallation,making the spall strength in the [111] direction is higher than that in the [110] direction when the shocking velocity is low (U_p≤0.9 km/s),and slightly lower than that in the [110] direction when the shocking velocity is large (U_p ≥1.2 km/s).The research results are expected to provide theoretical support and data accumulation for the application of CoCrFeMnNi high-entropy alloys under extreme shock conditions.
来源 力学学报 ,2022,54(8):2152-2160 【核心库】
DOI 10.6052/0459-1879-22-239
关键词 高熵合金 ; 弹塑性双波分离 ; 层裂强度 ; 取向相关性 ; 冲击速度相关性 ; 分子动力学模拟
地址

1. 西南交通大学力学与航空航天学院, 成都, 610031  

2. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190  

3. 华中科技大学航空航天学院, 武汉, 430074

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金 ;  非线性力学国家重点实验室开放基金(2022年)资助项目
文献收藏号 CSCD:7292451

参考文献 共 38 共2页

1.  Qiu J. Effects of pre-compression on the hardness of CoCrFeNiMn high entropy alloy based an asymmetrical yield criterion. Journal of Alloys and Compounds,2019,802:93-102 CSCD被引 5    
2.  Klimova M V. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys. Journal of Alloys and Compounds,2019,811:152000 CSCD被引 13    
3.  吕昭平. 高熵合金的变形行为及强韧化. 金属学报,2018,54(3):1553-1566 CSCD被引 55    
4.  李建国. 高熵合金的力学性能及变形行为研究进展. 力学学报,2020,52(2):333-359 CSCD被引 26    
5.  Su Z X. The effect of interstitial carbon atoms on defect evolution in high entropy alloys under helium irradiation. Acta Materialia,2022,233:117955 CSCD被引 3    
6.  Cantor B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A,2004,375/377:213-218 CSCD被引 599    
7.  Bertin N. Frontiers in the Simulation of Dislocations. Annual Review of Materials Research,2020,50(1):437-464 CSCD被引 5    
8.  Jiang D D. Sudden change of spall strength induced by shock defects based on atomistic simulation of single crystal aluminum. Scripta Materialia,2022,210:114474 CSCD被引 4    
9.  Li W H. Defect reversibility regulates dynamic tensile strength in silicon carbide at high strain rates. Scripta Materialia,2022,213:114593 CSCD被引 1    
10.  Jian W R. Shock-induced amorphization in medium entropy alloy CoCrNi. Scripta Materialia,2022,209:114379 CSCD被引 7    
11.  Cekil H C. The behaviour of Boron Carbide under shock compression conditions: MD simulation results. Computational Materials Science,2022,201:110872 CSCD被引 1    
12.  Zhu Y. Molecular dynamics simulation on spallation of [111] Cu/Ni nano-multilayers: Voids evolution under different shock pulse duration. Computational Materials Science,2022,202:110923 CSCD被引 1    
13.  Xie Z C. Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi. Acta Materialia,2021,221:117380 CSCD被引 8    
14.  Thurmer D. Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. Journal of Alloys and Compounds,2022,895:162567 CSCD被引 3    
15.  Plimpton S. Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics,1995,117(1):1-19 CSCD被引 1154    
16.  Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering,2010,18(1):015012 CSCD被引 452    
17.  Stukowski A. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering,2010,18(8):085001 CSCD被引 45    
18.  Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications,2015,197:212-219 CSCD被引 54    
19.  杜欣. 激光冲击下CoCrFeMnNi高熵合金微观塑性变形的分子动力学模拟. 力学学报,2021,53(12):3331-3340 CSCD被引 5    
20.  Choi W M. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. NPJ Computational Materials,2018,4(1):1-9 CSCD被引 23    
引证文献 2

1 陈荣 铸态TiZrNbV难熔高熵合金的层裂行为 含能材料,2024,32(4):387-396
CSCD被引 0 次

2 王路生 冲击速度对单晶镍层裂行为的影响规律及作用机制 物理学报,2024,73(16):164601
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号