钙钛矿含能材料DAP-4的制备工艺
Preparation Technology of Perovskite High-energetic Material DAP-4
查看参考文献12篇
文摘
|
为了确定钙钛矿型含能材料DAP-4的最佳制备工艺,以六水三乙烯二胺、高氯酸铵、高氯酸为原料,首先通过单因素实验确定了对DAP-4产率影响较大的因素是高氯酸体积、去离子水体积和出料温度,影响较小的因素是反应时间和反应温度。以此为基础,通过设计三因素三水平正交试验确定了最佳制备工艺,并测得各个实验条件下DAP-4颗粒的粒度、热分解性能及感度。结果表明,各因素对DAP-4产率影响的大小顺序为:高氯酸体积=出料温度>去离子水体积;最佳制备工艺为:高氯酸体积(质量分数35%)为32.6mL(投料比为1 ∶ 1 ∶ 7.5),去离子水体积为125mL,出料温度为20℃,此条件下DAP-4的产率可达到95.9%;改变高氯酸体积、去离子水体积、出料温度等条件对DAP-4的形貌和粒度影响不大,粒径分布在50~ 90μm之间;不同工艺条件下合成的DAP-4样品表观活化能在175~ 217kJ /mol之间,撞击感度和静电感度均钝感。 |
其他语种文摘
|
To identify the optimal preparation process of perovskite energetic material DAP-4,triethylenediamine hexahydrate, ammonium perchlorate,and perchloric acid as raw materials were used. Firstly,it was determined that the factors including perchloric acid,deionized water,and the discharge temperature had a greater effect on the yield of DAP-4 through single-factor experiments,and the less influential factors were the reaction time and reaction temperature. Then,the optimal preparation process was determined by designing three-factor and three-level orthogonal experiments,and the particle diameter, thermal decomposition performance,and sensitivity of DAP-4 under each experimental condition were also measured. The results showed that the influence of each factor on the yield of DAP-4 was as follows: perchloric acid = discharge temperature > deionized water,and the best preparation process was: the volume of perchloric acid (the mass fraction is 35%) was 32.6mL (n1 ∶ n2 ∶ n3 = 1 ∶ 1 ∶ 7.5),and the deionized water was 125mL and the discharge temperature was 20℃. Under these conditions,the yield of DAP-4 can reach 95.9%,and changing the amount of perchloric acid,deionized water, and discharge temperature had little effect on the morphology and particle diameter of DAP-4,and the particle diameter distribution was between 50-90μm,the apparent activation energy of DAP-4 samples synthesized under different process conditions ranged from 175 to 217kJ /mol,and the impact sensitivity and electrostatic sensitivity were both insensitive. |
来源
|
火炸药学报
,2022,45(4):479-485 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.202202006
|
关键词
|
应用化学
;
钙钛矿含能材料
;
DAP-4
;
正交试验
;
工艺优化
|
地址
|
陕西应用物理化学研究所, 陕西, 西安, 710061
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-7812 |
学科
|
化学;武器工业 |
基金
|
国防科技重点实验室基金
|
文献收藏号
|
CSCD:7288123
|
参考文献 共
12
共1页
|
1.
Chen S L. Molecular perovskite high-energetic materials.
Science China Materials,2018,61(8):1123-1128
|
CSCD被引
27
次
|
|
|
|
2.
Zhou J. Thermal studies of novel molecular perovskite energetic material (C_6H_(14)N_2)[NH_4(ClO_4)_3].
Chinese Chemical Letters,2020,31(2):554-558
|
CSCD被引
16
次
|
|
|
|
3.
Deng P. Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite.
Journal of Alloys and Compounds,2020,827:154257-154263
|
CSCD被引
11
次
|
|
|
|
4.
Zhai P F. Thermal decomposition of ammonium perchlorate-based molecular perovskite from TG-DSC-FTIR-MS and ab initio molecular dynamics.
RSC Advances,2021,11:16388-16395
|
CSCD被引
8
次
|
|
|
|
5.
Li X X. Ammonium perchloratebased molecular perovskite energetic materials: preparation, characterization,and thermal catalysis performance with MoS_2.
Journal of Energetic Materials,2020,38(2):162-169
|
CSCD被引
9
次
|
|
|
|
6.
Fang H. The thermal catalytic effects of CoFe-layered double hydroxide derivative on the molecular perovskite energetic material (DAP-4).
Vacuum,2021,193:110503-110509
|
CSCD被引
6
次
|
|
|
|
7.
Han K H. Study of the thermal catalysis decomposition of ammonium perchloratebased molecular perovskite with titanium carbide MXene.
Vacuum,2020,180:109572
|
CSCD被引
10
次
|
|
|
|
8.
Zhu S D. Metal-doped (Fe, Nd, Ce, Zr, U) graphitic carbon nitride catalysts enhance thermal decomposition of ammonium perchloratebased molecular perovskite.
Materials & Design,2021,199:109426
|
CSCD被引
9
次
|
|
|
|
9.
Deng P. Enhanced the combustion performances of ammonium perchlorate-based energetic molecular perovskite using functionalized graphene.
Vacuum,2019,169:108882-108885
|
CSCD被引
11
次
|
|
|
|
10.
李宗佑. 分子钙钛矿含能材料的合成、表征及吸湿性.
含能材料,2020,28(6):539-543
|
CSCD被引
6
次
|
|
|
|
11.
Shang Y. Phase transition and thermal expansion of molecular perovskite energetic crystal (C_6N_2H_(14)) (NH_4) (ClO_4) _3 (DAP-4).
Fire-PhysChem,2022
|
CSCD被引
1
次
|
|
|
|
12.
Zhang W X. Molecular perovskites as a new platform for designing advanced multi-component energetic crystals.
Energetic Materials Frontiers,2020,1(3/4):123-135
|
CSCD被引
14
次
|
|
|
|
|