嵌套式螺旋药柱燃烧特性影响因素探究
Study on influencing factors of combustion characteristics for the nested helical grain
查看参考文献17篇
文摘
|
为进一步探究嵌套式螺旋药柱燃烧特性影响因素,以氧气作为氧化剂,在初始氧化剂通量约为3.0 g/(cm~2·s)条件下,对比分析了叶片数量、叶片旋转角和燃料间基础退移速率差异性对嵌套式螺旋药柱燃烧特性影响,主要包括退移速率及特征速度两方面。实验结果表明,适度增加叶片数量、叶片旋转角以及组成燃料间基础退移速率的差异,均有利于提高药柱退移速率和特征速度。但受ABS螺旋基体退移速率和特征速度较低的影响,叶片数量过高将降低药柱整体的燃烧性能。同时,受叶片引导旋流强度的影响,增大叶片旋转角对提高药柱退移速率存在最优值,而增大嵌套式螺旋药柱组成燃料间的基础退移速率差异性,则能够有助于螺旋特征结构的形成,从而提高药柱特征速度。此外,填充纯石蜡燃料的嵌套式螺旋药柱退移速率并未得到提升,其可能原因在于ABS叶片抑制了石蜡液滴夹带。 |
其他语种文摘
|
In order to further explore the influencing factors on combustion characteristics of the nested helical grain,the firing test was carried out. Using oxygen as the oxidizer with initial mass flux about 3.0 g/(cm~2·s),the effects of the number of blades, blade rotation angle and the difference of basic regression rate on the combustion performance for the nested helical grain were compared and analyzed,mainly including regression rate and characteristic velocity. The test results show that moderately increasing the number of blades,the rotation angle of the blades,and the difference in the basic regression rate between the component fuels are all beneficial to improving the regression rate and characteristic velocity of the grains. However,due to the low regression rate and characteristic velocity of the ABS helical matrix,excessive increase of blade number will decrease the overall combustion performance of the grain. Meanwhile,affected by the blade-guided swirl strength,rotation angle of the blade has an optimal value for improving regression rate of the grain. Increasing the difference of the basic regression rate between the fuel components of the nested helical grains can help the formation of the characteristic helical structure,further increasing the characteristic velocity. In addition, the regression rate of the nested helical grains filled with pure paraffin fuel is not improved,possibly because ABS blades inhibit the entrainment of paraffin droplets. |
来源
|
固体火箭技术
,2022,45(4):506-511 【核心库】
|
DOI
|
10.7673/j.issn.1006-2793.2022.04.003
|
关键词
|
固液火箭发动机
;
燃烧特性
;
退移速率
;
特征速度
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-2793 |
学科
|
航天(宇宙航行) |
基金
|
自然科学基金
|
文献收藏号
|
CSCD:7287724
|
参考文献 共
17
共1页
|
1.
田维平. 固体火箭发动机技术发展和面临的关键技术问题.
固体火箭技术,2021,44(1):4-8
|
CSCD被引
8
次
|
|
|
|
2.
蔡国飙. 固液混合火箭发动机技术综述与展望.
推进技术,2012,33(6):831-839
|
CSCD被引
22
次
|
|
|
|
3.
蔡国飙. 固液混比火箭发动机技术.
载人航天,2009,15(1):15-18
|
CSCD被引
4
次
|
|
|
|
4.
Kuo K K.
Fundamentals of hybrid rocket combustion and propulsion,2007
|
CSCD被引
5
次
|
|
|
|
5.
Karabeyoglu A. Scale-up tests of high regression rate paraffin-based hybrid rocket fuels.
Journal of Propulsion and Power,2004,20(6):1037-1045
|
CSCD被引
10
次
|
|
|
|
6.
Kanbayashi Y. Aluminum powder effects with aft-chamber extension and baffle plate installation for hybrid rocket.
AIAA Propulsion and Energy 2019 Forum,2019
|
CSCD被引
1
次
|
|
|
|
7.
Vignesh B. Effect of multi-location swirl injection on the performance of hybrid rocket motor.
Acta Astronautica,2020,176:111-123
|
CSCD被引
2
次
|
|
|
|
8.
Dinesh Mengu. Experimental studies of protrusion-inserted hybrid rocket motor with varying L/D ratio.
Journal of Spacecraft and Rockets,2020,58(1):134-147
|
CSCD被引
1
次
|
|
|
|
9.
OZTANC Coverstonev. Utilization of additive manufacturing in hybrid rocket technology: A review.
Acta Astronautica,2021,180:130-140
|
CSCD被引
2
次
|
|
|
|
10.
Fuller J. Advantages of rapid prototyping for hybrid rocket motor fuel grain fabrication.
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2011
|
CSCD被引
1
次
|
|
|
|
11.
Creech M. 3D printer for paraffin based hybrid rocket fuel grains.
53rd AIAA Aerospace Sciences Meeting,2015
|
CSCD被引
1
次
|
|
|
|
12.
Whitmore S A. Comparing hydroxyl terminated polybutadiene and acrylonitrile butadiene styrene as hybrid rocket fuels.
Journal of Propulsion and Power,2013,29(3):582-592
|
CSCD被引
2
次
|
|
|
|
13.
Whitmore S A. Engineering model for hybrid fuel regression rate amplification using helical ports.
Journal of Propulsion and Power,2017,33(2):398-407
|
CSCD被引
3
次
|
|
|
|
14.
Armold D. Test of hybrid rocket fuel grains with swirl patterns fabricated using rapid prototyping technology.
49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2013
|
CSCD被引
3
次
|
|
|
|
15.
Zhang S. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain.
Acta Astronautica,2016,127:384-393
|
CSCD被引
4
次
|
|
|
|
16.
Wang Z. Combustion performance of a novel hybrid rocket fuel grain with a nested helical structure.
Aerospace Science and Technology,2020,97:105613
|
CSCD被引
1
次
|
|
|
|
17.
Wang Z. Improving the combustion performance of a hybrid rocket engine using a novel fuel grain with a nested helical structure.
Journal of Visualized Experiments,2021:167
|
CSCD被引
1
次
|
|
|
|
|