混合型加载下钢纤维混凝土损伤过程的声发射参数分析
Acoustic Emission Parameters in the Damage Process of Steel Fiber Reinforced Concrete under Mixed Loading
查看参考文献33篇
文摘
|
结合声发射技术,开展Ⅰ-Ⅱ混合型载荷作用下钢纤维混凝土带预制中心裂纹巴西圆盘(BDCN)破坏特性的实验研究,得到试件破坏过程中声发射特征参数的演化过程。运用机器学习算法,对声发射参数进行分析,揭示钢纤维混凝土的损伤机理。结果表明:依据累积声发射强度曲线及时间-载荷曲线的变化,BDCN试件破坏全过程可以划分为3个阶段:前两个阶段损伤的主要来源是混凝土基体中微裂纹的起裂和大量微裂纹汇聚扩展,最后一个阶段声发射源的主要机制则是钢纤维的脱粘及拉拔。运用高斯混合聚类算法,可以将损伤源划分为拉伸型裂纹和剪切型裂纹。其中,拉伸型裂纹主导了每个阶段的损伤,而剪切型裂纹对损伤起到了促进作用。使用支持向量机求得的两类裂纹的分界线方程表明,拉伸型裂纹与剪切型裂纹的分界线并不总是一条过原点的直线。 |
其他语种文摘
|
Using the acoustic emission (AE) technique, a series of Brazilian disk tests with a central notch (BDCN) under mixed loading are conducted to investigate the fracture mechanism of steel fiber reinforced concrete (SFRC). The evolution of the AE parameters during the fracture process is analyzed. The results indicate that the damage process consists of three stages based on the characteristics of the cumulative signal strength and load versus time relationships. The damage in the first stage is caused by the microcrack initiation, and then the coalescence and extension of microcracks. AE signals captured during the third stage are caused by the debonding and extension of steel fibers. By employing the machine learning algorithm and analyzing the AE parameters, the damage mechanism of SFRC is revealed. Using Gaussian mixture models, it is possible to classify damage sources as tensile cracks or shear cracks. Tensile cracks dominate the damage process, while shear cracks contribute to it. From the support vector machine, it is evident that the boundaries between tensile and shear cracks are not always straight lines passing through the origin. |
来源
|
兵工学报
,2022,43(8):1881-1891 【核心库】
|
DOI
|
10.12382/bgxb.2021.0468
|
关键词
|
钢纤维混凝土
;
损伤机理
;
声发射
;
高斯混合聚类
|
地址
|
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7286235
|
参考文献 共
33
共2页
|
1.
王宗炼. 基于小波变换的混凝土压缩损伤模式识别.
兵工学报,2017,38(9):1745-1753
|
CSCD被引
3
次
|
|
|
|
2.
Smedt De M. Experimental analysis of monotonic and cyclic pull-out of steel fibres by means of acoustic emission and X-ray microfocus computed tomography.
Proceedings,2018,2(8):1-6
|
CSCD被引
1
次
|
|
|
|
3.
Farhidzadeh A. Fracture mode identification in cementitious materials using supervised pattern recognition of acoustic emission features.
Construction and Building Materials,2014,67(Part B):129-138
|
CSCD被引
8
次
|
|
|
|
4.
Ohtsu M. Simplified moment tensor analysis and unified decomposition of acoustic emission source:application to in situ hydrofracturing test.
Journal of Geophysical Research B,1991,96(B4):1187-1189
|
CSCD被引
33
次
|
|
|
|
5.
Ohno K. Fracture process zone in notched concrete beam under three-point bending by acoustic emission.
Construction & Building Materials,2014,67(Part B):139-145
|
CSCD被引
12
次
|
|
|
|
6.
Liu J P. Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission.
Theoretical and Applied Fracture Mechanics,2015,75:151-159
|
CSCD被引
9
次
|
|
|
|
7.
任会兰. 基于声发射矩张量分析混凝土破坏的裂纹运动.
力学学报,2019,51(6):1830-1840
|
CSCD被引
17
次
|
|
|
|
8.
Prem P R. Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC.
Construction and Building Materials,2018,158:670-682
|
CSCD被引
3
次
|
|
|
|
9.
Lacidogna G. Damage monitoring of three point bending concrete specimens by acoustic emission and resonant frequency analysis.
Engineering Fracture Mechanics,2019,210:203-211
|
CSCD被引
3
次
|
|
|
|
10.
Han Q. Acoustic emission data analyses based on crumb rubber concrete beam bending tests.
Engineering Fracture Mechanics,2019,210:189-202
|
CSCD被引
7
次
|
|
|
|
11.
Li B. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete.
Construction and Building Materials,2018,180:474-486
|
CSCD被引
14
次
|
|
|
|
12.
Li B. Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression.
Construction and Building Materials,2017,140:109-118
|
CSCD被引
6
次
|
|
|
|
13.
Banjara N K. Investigations on acoustic emission parameters during damage progression in shear deficient and GFRP strengthened reinforced concrete components.
Measurement,2019,137:501-514
|
CSCD被引
1
次
|
|
|
|
14.
Ohno K. Crack classification in concrete based on acoustic emission.
Construction & Building Materials,2010,24(12):2339-2346
|
CSCD被引
69
次
|
|
|
|
15.
Rasheed M A. Fracture studies on synthetic fiber reinforced cellular concrete using acoustic emission technique.
Construction and Building Materials,2018,169:100-112
|
CSCD被引
2
次
|
|
|
|
16.
Rasheed M A. Acoustic emission characterization of hybrid fiber reinforced cellular concrete under direct shear loads.
Journal of Nondestructive Evaluation,2019,38(1):1-14
|
CSCD被引
2
次
|
|
|
|
17.
Prem P R. Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending.
Applied Acoustics,2017,117:28-38
|
CSCD被引
7
次
|
|
|
|
18.
Farhidzadeh A. A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures.
Journal of Intelligence Material System Structure,2013,24:1722-1735
|
CSCD被引
9
次
|
|
|
|
19.
Suthar D. Probabilistic approach to crack mode classification in concrete under uniaxial compression.
Proceedings of NDE 2017 Conference & Exhibition of the Indian Society for NDE,2017
|
CSCD被引
1
次
|
|
|
|
20.
Das A K. Machine learning based crack mode classification from unlabeled acoustic emission waveform features.
Cement and Concrete Research,2019,121:42-57
|
CSCD被引
5
次
|
|
|
|
|