帮助 关于我们

返回检索结果

混合型加载下钢纤维混凝土损伤过程的声发射参数分析
Acoustic Emission Parameters in the Damage Process of Steel Fiber Reinforced Concrete under Mixed Loading

查看参考文献33篇

文摘 结合声发射技术,开展Ⅰ-Ⅱ混合型载荷作用下钢纤维混凝土带预制中心裂纹巴西圆盘(BDCN)破坏特性的实验研究,得到试件破坏过程中声发射特征参数的演化过程。运用机器学习算法,对声发射参数进行分析,揭示钢纤维混凝土的损伤机理。结果表明:依据累积声发射强度曲线及时间-载荷曲线的变化,BDCN试件破坏全过程可以划分为3个阶段:前两个阶段损伤的主要来源是混凝土基体中微裂纹的起裂和大量微裂纹汇聚扩展,最后一个阶段声发射源的主要机制则是钢纤维的脱粘及拉拔。运用高斯混合聚类算法,可以将损伤源划分为拉伸型裂纹和剪切型裂纹。其中,拉伸型裂纹主导了每个阶段的损伤,而剪切型裂纹对损伤起到了促进作用。使用支持向量机求得的两类裂纹的分界线方程表明,拉伸型裂纹与剪切型裂纹的分界线并不总是一条过原点的直线。
其他语种文摘 Using the acoustic emission (AE) technique, a series of Brazilian disk tests with a central notch (BDCN) under mixed loading are conducted to investigate the fracture mechanism of steel fiber reinforced concrete (SFRC). The evolution of the AE parameters during the fracture process is analyzed. The results indicate that the damage process consists of three stages based on the characteristics of the cumulative signal strength and load versus time relationships. The damage in the first stage is caused by the microcrack initiation, and then the coalescence and extension of microcracks. AE signals captured during the third stage are caused by the debonding and extension of steel fibers. By employing the machine learning algorithm and analyzing the AE parameters, the damage mechanism of SFRC is revealed. Using Gaussian mixture models, it is possible to classify damage sources as tensile cracks or shear cracks. Tensile cracks dominate the damage process, while shear cracks contribute to it. From the support vector machine, it is evident that the boundaries between tensile and shear cracks are not always straight lines passing through the origin.
来源 兵工学报 ,2022,43(8):1881-1891 【核心库】
DOI 10.12382/bgxb.2021.0468
关键词 钢纤维混凝土 ; 损伤机理 ; 声发射 ; 高斯混合聚类
地址

北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081

语种 中文
文献类型 研究性论文
ISSN 1000-1093
学科 一般工业技术
基金 国家自然科学基金项目
文献收藏号 CSCD:7286235

参考文献 共 33 共2页

1.  王宗炼. 基于小波变换的混凝土压缩损伤模式识别. 兵工学报,2017,38(9):1745-1753 CSCD被引 3    
2.  Smedt De M. Experimental analysis of monotonic and cyclic pull-out of steel fibres by means of acoustic emission and X-ray microfocus computed tomography. Proceedings,2018,2(8):1-6 CSCD被引 1    
3.  Farhidzadeh A. Fracture mode identification in cementitious materials using supervised pattern recognition of acoustic emission features. Construction and Building Materials,2014,67(Part B):129-138 CSCD被引 8    
4.  Ohtsu M. Simplified moment tensor analysis and unified decomposition of acoustic emission source:application to in situ hydrofracturing test. Journal of Geophysical Research B,1991,96(B4):1187-1189 CSCD被引 33    
5.  Ohno K. Fracture process zone in notched concrete beam under three-point bending by acoustic emission. Construction & Building Materials,2014,67(Part B):139-145 CSCD被引 12    
6.  Liu J P. Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission. Theoretical and Applied Fracture Mechanics,2015,75:151-159 CSCD被引 9    
7.  任会兰. 基于声发射矩张量分析混凝土破坏的裂纹运动. 力学学报,2019,51(6):1830-1840 CSCD被引 17    
8.  Prem P R. Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC. Construction and Building Materials,2018,158:670-682 CSCD被引 3    
9.  Lacidogna G. Damage monitoring of three point bending concrete specimens by acoustic emission and resonant frequency analysis. Engineering Fracture Mechanics,2019,210:203-211 CSCD被引 3    
10.  Han Q. Acoustic emission data analyses based on crumb rubber concrete beam bending tests. Engineering Fracture Mechanics,2019,210:189-202 CSCD被引 7    
11.  Li B. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete. Construction and Building Materials,2018,180:474-486 CSCD被引 14    
12.  Li B. Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression. Construction and Building Materials,2017,140:109-118 CSCD被引 6    
13.  Banjara N K. Investigations on acoustic emission parameters during damage progression in shear deficient and GFRP strengthened reinforced concrete components. Measurement,2019,137:501-514 CSCD被引 1    
14.  Ohno K. Crack classification in concrete based on acoustic emission. Construction & Building Materials,2010,24(12):2339-2346 CSCD被引 69    
15.  Rasheed M A. Fracture studies on synthetic fiber reinforced cellular concrete using acoustic emission technique. Construction and Building Materials,2018,169:100-112 CSCD被引 2    
16.  Rasheed M A. Acoustic emission characterization of hybrid fiber reinforced cellular concrete under direct shear loads. Journal of Nondestructive Evaluation,2019,38(1):1-14 CSCD被引 2    
17.  Prem P R. Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending. Applied Acoustics,2017,117:28-38 CSCD被引 7    
18.  Farhidzadeh A. A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures. Journal of Intelligence Material System Structure,2013,24:1722-1735 CSCD被引 9    
19.  Suthar D. Probabilistic approach to crack mode classification in concrete under uniaxial compression. Proceedings of NDE 2017 Conference & Exhibition of the Indian Society for NDE,2017 CSCD被引 1    
20.  Das A K. Machine learning based crack mode classification from unlabeled acoustic emission waveform features. Cement and Concrete Research,2019,121:42-57 CSCD被引 5    
引证文献 3

1 姚熊亮 水下爆炸冲击波载荷沿燃气轮机结构传递特征 兵工学报,2022,43(9):2367-2378
CSCD被引 5

2 张力中 基于Basic Theta*算法的声发射源定位方法 兵工学报,2025,46(2):240234
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号