面向高比例新能源并网场景的风光-电动车协同调度方法
A Wind-Solar-Electric Vehicles Coordination Scheduling Method for High Proportion New Energy Grid-Connected Scenarios
查看参考文献22篇
文摘
|
风光-电动汽车协同调度能够有效降低风光出力和电动汽车无序充电等多重不确定性对电力系统的不利影响.现有优化调度模型多以等效负荷波动最小为优化目标,仅考虑了等效负荷的整体波动性,无法衡量风光出力与负荷的匹配度且并未考虑不同出力场景下风光出力的差异性.针对上述问题,提出一种面向高比例新能源并网场景的风光-电动车协同调度方法.构建基于蒙特卡罗模拟的电动汽车无序充电模型;基于风光出力预测数据,构建基于Gap statistic和K-means++算法的风光出力典型日划分模型;以等效负荷方差和负荷追踪系数最小为双优化目标,构建风光-电动汽车协同调度模型,并采用NSGA-II算法求解.结果表明:所提模型能够有效提升风光出力与负荷的匹配度,降低等效负荷波动性,从而缓解风光出力和电动汽车无序充电等多重不确定性对电力系统的不利影响. |
其他语种文摘
|
Wind-solar-electric vehicles coordinated optimization scheduling can effectively reduce the adverse effects of multiple uncertainties of wind-solar output and disorderly charging of electric vehicles on the power system. Most of the existing optimization scheduling models take the minimum equivalent load fluctuation as the optimization objective, which, only considering the overall fluctuation of equivalent load, cannot measure the matching degree of output-load, and do not consider the difference of output in different output scenarios. Therefore, a wind-solar-electric vehicles coordination scheduling method for high proportion new energy grid-connected scenarios is proposed. First, the disordered charging model of electric vehicles by Monte Carlo simulation is constructed. Then, a wind-solar output typical day classification model using Gap statistical and K-means++ is constructed based on the forecasting data of wind and solar power. Finally, taking the minimum equivalent load variance and load tracking coefficient as the double optimization objectives, a wind-solar-electric vehicles coordination optimization scheduling model is established, and the NSGA-II algorithm is used to solve it. The results demonstrate that the proposed model can effectively improve the matching degree of wind-solar output and load, and reduce the fluctuation of equivalent load, so as to reduce the adverse effects of multiple uncertainties of wind-solar output and disorderly charging of electric vehicles on the power system. |
来源
|
上海交通大学学报
,2022,56(5):554-563 【核心库】
|
DOI
|
10.16183/j.cnki.jsjtu.2022.040
|
关键词
|
典型日划分
;
源荷匹配度
;
风光-电动汽车
;
协同调度
;
NSGA-II算法
|
地址
|
1.
(北京)华北电力大学新能源学院, 新能源电力系统国家重点实验室, 北京, 102206
2.
大唐(赤峰)新能源有限公司, 内蒙古, 赤峰, 024000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-2467 |
学科
|
电工技术 |
基金
|
雅砻江流域风光水多能互补运行的优化调度方式研究
|
文献收藏号
|
CSCD:7281771
|
参考文献 共
22
共2页
|
1.
鲁宗相. 含高比例可再生能源电力系统灵活性规划及挑战.
电力系统自动化,2016,40(13):147-158
|
CSCD被引
176
次
|
|
|
|
2.
游广增. 基于典型运行场景聚类的电力系统灵活性评估方法.
上海交通大学学报,2021,55(7):802-813
|
CSCD被引
13
次
|
|
|
|
3.
孙晓明. 基于分时电价的电动汽车有序充电控制策略设计.
电力系统自动化,2013,37(1):191-195
|
CSCD被引
75
次
|
|
|
|
4.
Jian L N. High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles.
Applied Energy,2017,186:46-55
|
CSCD被引
1
次
|
|
|
|
5.
Szinai J K. Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management.
Energy Policy,2020,136:111051
|
CSCD被引
4
次
|
|
|
|
6.
Quddus M A. Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources.
Transportation Research Part E: Logistics and Transportation Review,2019,128:251-279
|
CSCD被引
3
次
|
|
|
|
7.
Song Y H. Integration of plug-in hybrid and electric vehicles: Experience from China.
IEEE PES General Meeting,2010:1-6
|
CSCD被引
1
次
|
|
|
|
8.
侯建朝. 计及需求响应的风电-电动汽车协同调度多目标优化模型.
电力自动化设备,2016,36(7):22-27
|
CSCD被引
29
次
|
|
|
|
9.
冉忠. 电动汽车参与受阻风电消纳的源荷优化控制方法.
可再生能源,2020,38(3):358-365
|
CSCD被引
2
次
|
|
|
|
10.
葛少云. 电动汽车有序充电的峰谷电价时段优化.
电力系统保护与控制,2012,40(10):1-5
|
CSCD被引
50
次
|
|
|
|
11.
郭春林. V2G模式下电动汽车与可再生能源双层协调优化.
电力系统及其自动化学报,2019,31(9):72-77
|
CSCD被引
4
次
|
|
|
|
12.
丁明. 面向风电接纳能力评价的风资源/负荷典型场景集生成方法与应用.
中国电机工程学报,2016,36(15):4064-4072
|
CSCD被引
54
次
|
|
|
|
13.
黎静华. 生成风电功率时间序列场景的双向优化技术.
中国电机工程学报,2014,34(16):2544-2551
|
CSCD被引
17
次
|
|
|
|
14.
王开艳. 充分发挥多能互补作用的风蓄水火协调短期优化调度方法.
电网技术,2020,44(10):3631-3641
|
CSCD被引
20
次
|
|
|
|
15.
温正楠. 风光水互补发电系统与需求侧数据中心联动的优化调度方法.
电网技术,2019,43(7):2449-2460
|
CSCD被引
21
次
|
|
|
|
16.
Federal Highway Administration.
National household travel survey,2017
|
CSCD被引
2
次
|
|
|
|
17.
温剑锋. 基于出行链随机模拟的电动汽车充电需求分析.
电网技术,2015,39(6):1477-1484
|
CSCD被引
44
次
|
|
|
|
18.
Tibshirani R. Estimating the number of clusters in a data set via the gap statistic.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),2001,63(2):411-423
|
CSCD被引
67
次
|
|
|
|
19.
Arthur D. K-Means++: The advantages of careful seeding.
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,2007
|
CSCD被引
15
次
|
|
|
|
20.
叶林. 风光水多能互补发电系统日内时间尺度运行特性分析.
电力系统自动化,2018,42(4):158-164
|
CSCD被引
40
次
|
|
|
|
|