On Chevalley Restriction Theorem for Semi-reductive Algebraic Groups and Its Applications
查看参考文献28篇
文摘
|
An algebraic group is called semi-reductive if it is a semi-direct product of a reductive subgroup and the unipotent radical. Such a semi-reductive algebraic group naturally arises and also plays a key role in the study of modular representations of non-classical finite-dimensional simple Lie algebras in positive characteristic, and some other cases. Let G be a connected semi-reductive algebraic group over an algebraically closed field F and g = Lie(G). It turns out that G has many same properties as reductive groups, such as the Bruhat decomposition. In this note, we obtain an analogue of classical Chevalley restriction theorem for g, which says that the G-invariant ring F[g]~G is a polynomial ring if g satisfies a certain “positivity” condition suited for lots of cases we are interested in. As applications, we further investigate the nilpotent cones and resolutions of singularities for semi-reductive Lie algebras. |
来源
|
Acta Mathematica Sinica. English Series
,2022,38(8):1421-1435 【核心库】
|
DOI
|
10.1007/s10114-022-1037-2
|
关键词
|
Semi-reductive algebraic groups
;
semi-reductive Lie algebras
;
Chevalley restriction theorem
;
nilpotent cone
;
Steinberg map
;
Springer resolution
|
地址
|
1.
School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221
2.
School of Mathematical Sciences, East China Normal University, Shanghai, 200241
3.
Department of Mathematics, Shanghai Maritime University, Shanghai, 201306
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1439-8516 |
学科
|
数学 |
基金
|
国家自然科学基金
;
Shanghai Key Laboratory of PMMP
;
the Fundamental Research Funds of Yunnan Province
|
文献收藏号
|
CSCD:7279300
|
参考文献 共
28
共2页
|
1.
Borel A. Linear Algebraic Groups, Second Enlarged Edition.
Graduate Texts in Mathematics, Vol. 126,1991
|
CSCD被引
1
次
|
|
|
|
2.
Chevalley C. Invariants of finite groups generated by reflections.
Amer. J. Math,1955,77:778-782
|
CSCD被引
7
次
|
|
|
|
3.
Duflo M. Operateurs diffrentiels bi-invariants sur un groupe de Lie.
Ann. Sci. Ecole Norm. Sup,1977,10(4):265-288
|
CSCD被引
2
次
|
|
|
|
4.
Humphreys J E. Introduction to Lie Algebras and Representation Theory.
Graduate Texts in Mathematics, Vol. 9,1972
|
CSCD被引
6
次
|
|
|
|
5.
Humphreys J E.
Conjugacy Classes in Semisimple Algebraic Groups,1995
|
CSCD被引
1
次
|
|
|
|
6.
Jantzen J C.
Nilpotent Orbits in Representation Theory, Lie Theory, Progr. Math., Vol. 228,2004
|
CSCD被引
1
次
|
|
|
|
7.
Joseph A. Second commutant theorems in enveloping algebraas.
Amer. J. Math,1977,99(6):1167-1192
|
CSCD被引
1
次
|
|
|
|
8.
Kostrikin A I. Graded Lie algebras of finite characteristic.
Izv. Akad. Nauk SSSR Ser. Mat,1969,33:251-322
|
CSCD被引
1
次
|
|
|
|
9.
Lin Z. Algebraic group actions in the cohomology theory of Lie algebras of Cartan type.
J. Algebra,1996,179:852-888
|
CSCD被引
2
次
|
|
|
|
10.
Liu B. Invariants and dualities of a certain parabolic group.
arXiv:2111.08281[math.RT]
|
CSCD被引
1
次
|
|
|
|
11.
Liu B. Enhanced Brauer algebras and enhanced dualties for orthogonal and symplectic groups.
arXiv:2111.08287[math.RT]
|
CSCD被引
1
次
|
|
|
|
12.
Luna D. A generalization of the Chevalley restriction theorem.
Duke Math. J,1979,46:487-496
|
CSCD被引
1
次
|
|
|
|
13.
Nakano D K. Projective modules over Lie algebras of Cartan type.
Mem. Amer. Math. Soc,1992,98(470)
|
CSCD被引
1
次
|
|
|
|
14.
Premet A. The theorem on restriction invariants, and nilpotent elements in Wn.
Math. USSR Sbornik,1992,73(1):135-159
|
CSCD被引
1
次
|
|
|
|
15.
Premet A. Classification of finite dimensional simple Lie algebras in prime characteristics, Representations of algebraic groups, quantum groups, and Lie algebras.
Contemp. Math., Vol. 413,2006:185-214
|
CSCD被引
1
次
|
|
|
|
16.
Ren Y. The BGG category for generalized reductive Lie algebras.
arXiv:2010.11849[Math.RT]
|
CSCD被引
1
次
|
|
|
|
17.
Strade H.
Modular Lie Algebras and Their Representations,1988
|
CSCD被引
53
次
|
|
|
|
18.
Shen G. Graded modules of graded Lie algebras of Cartan type. III. Irreducible modules.
Chinese Ann. Math. Ser. B,1988,9(4):404-417
|
CSCD被引
7
次
|
|
|
|
19.
Skryabin S. Independent systems of derivations and Lie algebra representations.
Algebra and Analysis (Kazan, 1994),1996:115-150
|
CSCD被引
2
次
|
|
|
|
20.
Springer T.
Linear Algebraic Groups, 2nd Edition,1998
|
CSCD被引
1
次
|
|
|
|
|