帮助 关于我们

返回检索结果

表观扩散系数值评估较低级别胶质瘤IDH-1突变状态和瘤细胞增殖活性的价值
The value of apparent diffusion coefficient value in evaluating the IDH-1 mutation status and tumor cell proliferation activity of lower-grade gliomas

查看参考文献32篇

文摘 目的探讨表观扩散系数(apparent diffusion coefficient, ADC)值在较低级别胶质瘤(lower-grade gliomas, LGG)异柠檬酸脱氢酶-1(isocitrate dehydrogenase 1, IDH-1)突变状态和瘤细胞增殖活性中的评估价值。材料与方法回顾性分析经病理证实并测定IDH-1突变状态和Ki-67增殖指数的44例LGG患者病例,其中IDH-1突变型24例,IDH-1野生型20例。在ADC图上测量病灶实质的最小ADC值(ADC_(min))、平均ADC值(ADC_(mean))和对侧镜像正常脑白质的ADC值,计算相对最小ADC值(rADC_(min))和相对平均ADC值(rADC_(mean))。比较LGG IDH-1突变型和IDH-1野生型组间各ADC值间差异,绘制受试者工作特征(receiver operating characteristic, ROC)曲线分析各ADC值对IDH-1突变状态的评估效能,并分析其与Ki-67增殖指数间的相关性。结果IDH-1突变型组的ADC_(min)、ADC_(mean)、rADC_(min)和rADC_(mean)值均高于IDH-1野生型组,组间差异具有统计学意义(P均<0.05)。ROC曲线结果显示各参数均能对IDH-1突变型和IDH-1野生型LGG进行有效区分,其中,rADC_(min)鉴别效能最佳,以0.978为最佳截止值,相应的曲线下面积(area under the curve, AUC)、敏感度、特异度、准确度、阳性预测值和阴性预测值分别为0.838、80.00%、83.33%、81.82%、80.00%和83.30%。LGG ADC_(min)、ADC_(mean)、rADC_(min)和rADC_(mean)与Ki-67增殖指数间均呈不同程度的负相关关系(r=-0.552、-0.590、-0.532、-0.579,P均<0.05)。结论ADC值可用于评估LGG IDH-1突变状态,对于肿瘤细胞增殖活性的评估也具有一定的价值。
其他语种文摘 Objective: To investigate the evaluation value of apparent diffusion coefficient(ADC)value in lower-grade gliomas(LGG) isocitrate dehydrogenase 1(IDH-1)mutation status and tumor cell proliferation activity. Materials and Methods: Forty-four patient cases with LGG were confirmed by pathology, and measured IDH-1 mutation status and the Ki-67 proliferation index was retrospectively analyzed, including 24 cases of IDH-1 mutant-type and 20 cases of IDH-1 wild-type. The minimum ADC value(ADC_(min)), mean ADC value(ADC_(mean))of the lesion parenchyma, and the ADC value of the contralateral mirror normal white matter on the ADC maps were measured, and the relative minimum ADC value(rADC_(min))and relative mean ADC value(rADC_(mean))were calculated. The differences in ADC values between the two groups were compared, and receiver operating characteristic(ROC)curves were drawn to evaluate the differential diagnostic efficacy. The Ki-67 proliferation index of the solid tumor components was also measured to explore its relationship with ADC values. Results: The ADC_(min), ADC_(mean), rADC_(min), and rADC_(mean) values in the IDH-1 mutant-type group were higher than those in the IDH-1 wild-type group, and the differences between the groups were statistically significant(all P<0.05). ROC results show that all parameters can effectively distinguish IDH-1 mutant-type and IDH-1 wild-type LGG. Among them, rADC_(min) has the best discrimination efficiency, and 0.978 is the best cut-off value, with area under the curve(AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value was 0.838, 80.00%, 83.33%, 81.82%, 80.00%, and 83.30%, respectively. ADC_(min), ADC_(mean), rADC_(min), rADC_(mean) and Ki-67 proliferation index showed different degrees of negative correlation(r=-0.552,-0.590,-0.532,-0.579, all P<0.05). Conclusions: ADC values can be used to evaluate LGG IDH-1 mutation status, and it also has a certain value for evaluating tumor cell proliferation activity.
来源 磁共振成像 ,2022,13(8):13-18 【核心库】
DOI 10.12015/issn.1674-8034.2022.08.003
关键词 脑胶质瘤 ; 较低级别胶质瘤 ; 异柠檬酸脱氢酶 ; Ki-67增殖指数 ; 磁共振成像 ; 表观扩散系数
地址

兰州大学第二医院放射科, 兰州大学第二临床医学院, 甘肃省医学影像重点实验室;;医学影像人工智能甘肃省国际科技合作基地, 兰州, 730030

语种 中文
文献类型 研究性论文
ISSN 1674-8034
学科 临床医学;肿瘤学
基金 国家自然科学基金 ;  甘肃省自然科学基金 ;  甘肃省医学影像重点实验室开放基金
文献收藏号 CSCD:7270382

参考文献 共 32 共2页

1.  Ostrom Q T. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol,2019,21(Suppl 5):v1-v100 CSCD被引 61    
2.  Chen J. An artificial neural network model based on DNA damage response genes to predict outcomes of lower-grade glioma patients. Brief Bioinform,2021,22(6) CSCD被引 1    
3.  Louis D N. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol,2016,131(6):803-820 CSCD被引 517    
4.  Fukuya Y. Tumor recurrence patterns after surgical resection of intracranial low-grade gliomas. J Neurooncol,2019,144(3):519-528 CSCD被引 2    
5.  Eckel-Passow J E. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med,2015,372(26):2499-2508 CSCD被引 65    
6.  Xu S. Immune-related genes with APA in microenvironment indicate risk stratification and clinical prognosis in grade II/III gliomas. Mol Ther Nucleic Acids,2021,23:1229-1242 CSCD被引 1    
7.  Han S. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer,2020,122(11):1580-1589 CSCD被引 14    
8.  Li Y. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: Correlation with Ki-67 proliferation status. Magn Reson Imaging,2021,78:18-24 CSCD被引 11    
9.  Liu X W. Apparent Diffusion Coefficient to Evaluate Adult Intracranial Ependymomas: Relationship to Ki-67 Proliferation Index. J Neuroimaging,2021,31(1):132-136 CSCD被引 2    
10.  Ke X A. Differentiating microcystic meningioma from atypical meningioma using diffusion-weighted imaging. Neuroradiology,2020,62(5):601-607 CSCD被引 6    
11.  刘泽亮. 磁共振扩散成像在脑胶质瘤预后预测的研究进展. 磁共振成像,2021,12(1):77-80 CSCD被引 4    
12.  Zhao J. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol,2019,141(1):195-203 CSCD被引 17    
13.  Henker C. Correlation of Ki-67 Index with Volumetric Segmentation and its Value as a Prognostic Marker in Glioblastoma. World Neurosurg,2019:125 CSCD被引 1    
14.  闫新亭. 磁共振扩散加权成像在脑胶质瘤的研究进展. 医学影像学杂志,2021,31(9):1586-1589 CSCD被引 2    
15.  Bai Y. Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging. Radiology,2016,278(2):496-504 CSCD被引 44    
16.  Li S. The relationship between the apparent diffusion coefficient and the Ki-67 proliferation index in intracranial solitary fibrous tumor/hemangiopericytoma. Neurosurg Rev,2022,45(2):1625-1633 CSCD被引 3    
17.  Xue C. Apparent Diffusion Coefficient Histogram Analysis for the Preoperative Evaluation of Ki-67 Expression in Pituitary Macroadenoma. Clin Neuroradiol,2022,32(1):269-276 CSCD被引 5    
18.  Liu X. Differentiation of intracranial solitary fibrous tumor/hemangiopericytoma from atypical meningioma using apparent diffusion coefficient histogram analysis. Neurosurg Rev,2022,45(3):2449-2456 CSCD被引 6    
19.  Gihr G A. Histogram Analysis of Diffusion Weighted Imaging in Low-Grade Gliomas: in vivo Characterization of Tumor Architecture and Corresponding Neuropathology. Front Oncol,2020:10 CSCD被引 2    
20.  蒋健. 胶质瘤异柠檬酸脱氢酶基因型与影像学研究进展. 磁共振成像,2021,12(5):103-106 CSCD被引 5    
引证文献 4

1 蔡争 MRI扩散加权成像联合外周血CD4+/CD8+比值预测Calli-Spheres载药微球栓塞介入治疗晚期肝癌疗效的价值 放射学实践,2023,38(1):84-88
CSCD被引 3

2 刘宏 表观扩散系数术前区分Luminal型与非Luminal型乳腺癌及其与Ki-67增殖指数的相关性研究 磁共振成像,2023,14(4):51-56
CSCD被引 5

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号