空基激光通信研究进展和趋势以及关键技术
Development status, trend and key technologies of air-based laser communication
查看参考文献52篇
郑运强
1,2
刘欢
1,2
*
孟佳成
1,2
王宇飞
1,2
聂文超
1,2
武军霞
1,2
蔚停停
1,2
魏森涛
1,2
袁站朝
1,2
汪伟
1,2
谢小平
1,2
文摘
|
激光通信以其带宽大、保密性好、无频谱限制等特点成为构建空天地海全域网络高速通信有效技术途径。相较天基而言,搭载在气球、飞艇、无人机、飞机等平台的空基激光通信系统以其灵活性好、成本低、可维修等特点,成为高保密军用战术网络、救灾应急网络、商用低成本网络的首选。详细介绍了美国、德国、法国、中国等空基激光通信技术最新研究进展和主要项目的参数指标,总结了一对多、轻量化、高带宽等发展趋势和面临的大气信道复杂、背景噪声严重等技术挑战,提出了高动态捕跟、高密度集成、高灵敏度接收等关键技术措施,为空基激光通信技术研究和工程项目研制提供参考。 |
其他语种文摘
|
Laser communication, with its wide bandwidth, good confidentiality and no electromagnetic spectrum constraints, has become an effective means to construct high-speed communication in the air, space, earth and sea integrated communication networks. Compared with space-based, the air-based laser communication system, which is carried on balloon, airship, unmanned aerial vehicle aircraft and other platforms, has become the first choice for high security military network, disaster relief emergency network and commercial low-cost network due to its good flexibility, low cost and good maintainability. The latest research progress and main parameters of air-based laser communication system in USA, Germany, France and China are introduced in detail. The trend of one-to-many, lighter weight, wider bandwidth and the challenges of complex atmospheric channel and serious background noise are summarized, and key technical method, such as high dynamic capturing and tracking, high density integration and high sensitivity reception are proposed, which can provide references for air-based laser communication research. |
来源
|
红外与激光工程
,2022,51(6):20210475 【核心库】
|
DOI
|
10.3788/IRLA20210475
|
关键词
|
空基激光通信
;
机载激光通信
;
自由空间光通信
;
大气激光通信
|
地址
|
1.
中国科学院西安光学精密机械研究所光子网络技术研究室, 陕西, 西安, 710119
2.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-2276 |
学科
|
电子技术、通信技术 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:7263393
|
参考文献 共
52
共3页
|
1.
Yan Lusheng. Current statusand and key technologies of unmanned Aerial.
Laser & Optoelectronics Progress. (in Chinese),2016,53:080005
|
CSCD被引
3
次
|
|
|
|
2.
Jiang Huilin.
The Technologies and Systems of Space Laser Communication. (in Chinese),2010
|
CSCD被引
3
次
|
|
|
|
3.
Feldmann R J. Development of laser crosslink for airborne operations.
Military Communications Conference, 1998. MILCOM 98. Proceedings of IEEE,1998
|
CSCD被引
1
次
|
|
|
|
4.
Moore C I. Lasercomm demonstration during US Navy Trident Warrior 06 Forcenet exercise.
2007 IEEE Antennas and Propagation Society International Symposium,2007:17-20
|
CSCD被引
1
次
|
|
|
|
5.
Biswas A. Airborne optical communications demonstrator design and pre-flight test results.
Proceedings of SPIE. 5712,2005:205
|
CSCD被引
1
次
|
|
|
|
6.
Milner S. Control and prediction in hierarchical wireless networks.
Computer Communications Workshops,2011
|
CSCD被引
1
次
|
|
|
|
7.
Ortiz G G. Design and development of a robust ATP subsystem for the Altair UAV-to-ground lasercomm 2.5-Gbps demonstration.
Free-Space Laser Communication Technologies XV.4975,2003:103-114
|
CSCD被引
1
次
|
|
|
|
8.
Walther F G. Air-to-ground lasercom system demonstrationdesign overview and results summary.
Free-space Laser Communications X,2010
|
CSCD被引
1
次
|
|
|
|
9.
Fletcher T M. Observations of atmospheric effects for FALCON laser communication system flight test.
Proceedings of SPIE. 8038,2011:80380F
|
CSCD被引
1
次
|
|
|
|
10.
Grinch D S. Laser system for cooperative pointing & tracking of moving terminals over long distance.
Conference on Acquisition, Tracking, and Pointing XX. 6238,2006:623803
|
CSCD被引
1
次
|
|
|
|
11.
Casey C. Free space optical communication in the military environment.
20th International Command & Control Research & Technology Symposium,2015
|
CSCD被引
1
次
|
|
|
|
12.
Gangl M E. Fabrication and testing of laser communication terminals for aircraft.
Proceedings of SPIE. 6243,2006:624304
|
CSCD被引
1
次
|
|
|
|
13.
Giggenbach D. Optical free-space communications downlinks from stratospheric platforms-Overview on STROPEX, the optical communications experiment of capanina.
14th IST Mobile & Wireless Communications Summit,2005
|
CSCD被引
1
次
|
|
|
|
14.
Vigneshwaran S. Investigations on free space optics communication system.
Proceedings of the International Conference on Information Communication & Embedded Systems (ICICES’13),2013:819-824
|
CSCD被引
1
次
|
|
|
|
15.
Fuchs C. Optical communication links for aeronautical-and space-applications.
Photonische Netze,2014
|
CSCD被引
1
次
|
|
|
|
16.
Stotts L B. Optical RF communications adjunct.
Proceedings of SPIE. 7091,2008:709102
|
CSCD被引
2
次
|
|
|
|
17.
Wu Yingming. Research progress and structure system of space optical communication network technology.
Optical Communication Technology. (in Chinese),2017,41(11):46-49
|
CSCD被引
1
次
|
|
|
|
18.
Stotts L B. Hybrid optical RF airborne communications.
Proceedings of the IEEE,2009,97(6):1109-1127
|
CSCD被引
10
次
|
|
|
|
19.
Juarez J C. Evaluation of curvature adaptive optics for airborne laser communication systems.
Proceedings of SPIE, Laser Communication and Propagation through the Atmosphere and Oceans VII. 10770,2018:107700U
|
CSCD被引
1
次
|
|
|
|
20.
Mottini S. Optical Links for Fast and Secure Communications on Ground and in Space.
Considerations for Space and Space-Enabled Capabilities in NATO Coalition Operations. 20,2016:2018
|
CSCD被引
1
次
|
|
|
|
|