大景深光子多普勒测速仪设计及高超试验应用
Design of Large Depth Field Photon Doppler Velocimeter and Application in Ultra-high Speed Interior Ballistic Research
查看参考文献16篇
文摘
|
受限于炮口尺寸较小、激光能量衰减严重和测速系统作用距离有限等因素,超高速试验中的内弹道速度变化历程数据获取困难。针对该问题设计了一种大景深光子多普勒测速仪,并在超高速弹道靶上多次重复获取了内弹道速度变化历程数据。试验过程中,大景深光子多普勒测速仪分别记录了发射弹丸由静止加速至约2 km/s和7 km/s的速度变化历程,最高速度6.89 km/s。试验结果表明,大景深光子多普勒测速仪在超高速内弹道研究中具有较高的可行性和稳定性。 |
其他语种文摘
|
The Photon Doppler Velocimeter(PDV)is a non-contact velocity measurement equipment with high accuracy and high-time resolution,which can obtain the continuous interior ballistic velocity of ultrahigh- speed launchers.Continuous velocity data is very important for ultra-high-speed experiments.It can be used to understand the performance of ultra-high-speed launchers and the physical processes of ultrahigh- speed,as well as to develop the theory of interior ballistics.Limited by the small size of the muzzle,the serious attenuation of laser energy and(the limitation of)the bandwidth of detector,it is difficult for ordinary PDV to obtain continuous ultra-high-speed interior ballistic velocity.In this paper,we have developed a large depth field PDV with an effective working distance greater than 7 m,which is constructed based on fiber Mach-Zehnder interferometer.The emission aperture of optical antenna is 25 mm,the beam waist of emission position is located at 3.3~3.4 m,and the diameter of beam waist is 1 245 mm.In order to verify the performance of the system,we first simulated the high-speed motion process by using a rotating turntable and a motor,and tested the measurement error of the PDV system.In the velocity range of 1~40 m/s,the measurement uncertainty of the PDV can be controlled at 2.48%.Then we carried out experiments on the ultra-high-speed ballistic target (FD-18A) of China Aerodynamics Research and Development Center (CARDC),and repeatedly obtained the continuous ultra-high-speed inner ballistic velocity of the ultra-high-speed two-stage light gas guns.In the experiments,we placed a reflector directly behind the muzzle to change the direction of the laser signal and put the optical antenna on one side of the reflector.Finally,the PDV recorded the velocity changes of the launch model from static acceleration to about 2 km/s and 7 km/s,with the maximum velocity of 6.89 km/s.By comparing with the numerical simulation results,it is found that the measured velocity of experiment is lower than the simulation velocity in the test with a velocity of 2 km/s.While the measured velocity of experiment is higher than the simulation speed in the test with a velocity of 7 km/s,and the deviations are– 20.11%,– 23.7% and +9.15%,respectively.Through the analysis of velocity-acceleration data,it is found that the difference in friction between simulation and experiment may be the main reason for the difference of velocity.The actual friction force of the ultra-high-speed projectile in the ballistic target is greater than the theoretical friction force given in the simulation,so it may cause that the maximum speeds and accelerations are lower than the theoretical results in the test with an estimated launch velocity of 2 km/s.In the test with a velocity of 7 km/s,the mass of the projectile decreases rapidly due to severe friction,so the maximum velocity and acceleration in the second half of the movement are gradually larger than the simulation results. |
来源
|
光子学报
,2022,51(6):0628002 【核心库】
|
DOI
|
10.3788/gzxb20225106.0628002
|
关键词
|
物理光学
;
超高速弹道靶
;
光子多普勒测速仪
;
激光多普勒效应
;
内弹道速度
|
地址
|
1.
中国科学院西安光学精密机械研究所, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
中国空气动力学研究与发展中心超高速空气动力研究所, 四川, 绵阳, 621000
4.
青岛海洋科学与技术试点国家实验室, 青岛海洋科学与技术试点国家实验室, 山东, 青岛, 266200
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学;电子技术、通信技术 |
基金
|
山东省支持青岛海洋科学与技术试点国家实验室重大科技专项
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:7262527
|
参考文献 共
16
共1页
|
1.
Strand O T. Velocimetry using heterodyne techniques.
SPIE,2005
|
CSCD被引
1
次
|
|
|
|
2.
Mercier P. Heterodyne velocimetry and detonics experiments.
The Proceedings of the 28th International Congress on High-Speed Imaging and Photonics,2008
|
CSCD被引
1
次
|
|
|
|
3.
Pei Hongbo. Measuring detonation wave profiles in plastic-bonded explosives using PDV.
AIP Advances,2019,1(9):015306
|
CSCD被引
1
次
|
|
|
|
4.
Frugier P A. PDV and shock physics:Application to nitro methane shock detonation transition and particles ejection.
Novel Optical Systems Design and OptimizationⅩⅡ,2009
|
CSCD被引
1
次
|
|
|
|
5.
彭其先. 激光干涉测速技术在火炮内弹道研究中的应用.
弹道学报,2008,20(3):96-99
|
CSCD被引
4
次
|
|
|
|
6.
王德田. 激光干涉测速技术在内弹道弹丸速度测量中的应用研究.
高压物理学报,2011,25(2):133-137
|
CSCD被引
7
次
|
|
|
|
7.
吴立志. 用于瞬态高速飞片速度测量的光子多普勒测速系统.
红外与激光工程,2016,45(12):1217001
|
CSCD被引
3
次
|
|
|
|
8.
Mallick D D. Laser-driven Flyers and nanosecond-resolved velocimetry for spall studies in thin metal foils.
Experimental Mechanics,2019,59(5):611-628
|
CSCD被引
4
次
|
|
|
|
9.
宋宏伟. 光纤激光干涉测量激光冲击强化自由表面速度.
中国科学:物理学力学天文学,2012,42(8):861-868
|
CSCD被引
1
次
|
|
|
|
10.
Curtis A D. Laser-driven flyer plates for shock compression science:Launch and target impact probed by photon Doppler velocimetry.
Review of Scientific Instruments,2014,85(4):1655
|
CSCD被引
6
次
|
|
|
|
11.
Mance J G. Time-stretched photonic Doppler velocimetry.
Optics Express,2019,18(27):367751
|
CSCD被引
1
次
|
|
|
|
12.
Dolan D H. Tracking an imploding cylinder with photonic Doppler velocimetry.
Review of Scientific Instruments,2013,84(5):1625
|
CSCD被引
4
次
|
|
|
|
13.
Hutchinson T M. Photonic Doppler velocimetry of ohmically exploded aluminum surfaces.
Physics of Plasmas,2020,27:052705
|
CSCD被引
1
次
|
|
|
|
14.
Hao Geyang. Optimized all-fiber laser Doppler velocimeter with large depth of field.
Optical Fiber Technology,2020,60:102333
|
CSCD被引
2
次
|
|
|
|
15.
郝歌扬.
一种激光多普勒测速仪数据反演方法:中国,ZL201910967423.3,2019
|
CSCD被引
1
次
|
|
|
|
16.
郝歌扬.
一种应用于激光多普勒测速仪的运动起点自动定位方法:中国,ZL201910967426.7,2019
|
CSCD被引
1
次
|
|
|
|
|