电子束选区熔化成形Ti_2AlNb合金微观组织与性能
Microstructure and property of Ti_2AlNb alloy by selective electron beam melting
查看参考文献26篇
文摘
|
Ti_2AlNb基合金由于具有优异的高温比强度、高温抗蠕变性能和较高的断裂韧度,因而被认为是替代传统镍基高温合金最具潜力的材料。采用电子束选区熔化(selective electron beam melting,SEBM)技术成形Ti-22Al-25Nb合金,通过工艺优化获得高致密度(5.42~5.43 g/cm~3)的成形试样。研究了沉积态和热等静压(hot isostatic pressing,HIP)态试样的显微组织演变、物相演变及其对力学性能的影响。结果表明:沉积态和HIP态组织呈现出沿成形方向的柱状晶结构,且均由B2,O和 α_2相组成,沉积态试样中的O/ α_2相自上而下逐渐增加,HIP后组织趋于均匀化,且相对沉积态,析出相的宽度缩小、数量减少。沉积态试样中析出相较多的下部区域具有更高的显微硬度((345.87±5.09)HV),HIP后试样硬度值增加至388.91~390.48HV。沉积态试样室温抗拉强度和伸长率分别为(1061±23.71)MPa和(3.67±1.15)%,HIP后抗拉强度增加至(1101±23.07)MPa,伸长率降低至3.5%。 |
其他语种文摘
|
Ti_2AlNb based alloys is considered to be the most potential material material to replace the traditional Ni-based superalloys,because of its excellent high-temperature specific strength,creep resistance and high fracture toughness.Ti-22Al-25Nb alloy was fabricated by selective electron beam melting(SEBM),and the density of as-built samples reached 5.42-5.43 g/cm~3 through process optimization.The microstructure,phase evolution and mechanical property of the as-built and HIPed Ti_2AlNb alloy samples were investigated.The results show that the microstructure of the as-built and HIPed samples both show the columnar crystalline structures along the deposition direction,which are all composed of B2,O and α_2 phases,and the amount of O/ α_2 phase gradually increases from top to bottom.After HIP,the width and amount of the O/ α_2 phase are reduced and relatively uniform when compared with that of the as-built samples.In the bottom area,the microhardness of the asbuilt sample exhibits higher value of about(345.87±5.09)HV,while the hardness increases to 388.91-390.48HV after HIP.The ultimate tensile strength and elongation of the as-built sample at room temperature are(1061±23.71)MPa and(3.67±1.15)%respectively,and the ultimate tensile strength increases to(1101±23.07)MPa and the elongation reduces to 3.5%after HIP. |
来源
|
材料工程
,2022,50(7):156-164 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000958
|
关键词
|
Ti_2AlNb基合金
;
电子束选区熔化
;
致密度
;
显微组织
;
力学性能
|
地址
|
1.
西安赛隆金属材料有限责任公司, 西安
2.
西北有色金属研究院, 金属多孔材料国家重点实验室, 西安
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
广东省重点领域研发计划项目
;
陕西省科技重大专项
|
文献收藏号
|
CSCD:7261535
|
参考文献 共
26
共2页
|
1.
Zhang Y L. Microstructure and low cycle fatigue of a Ti_2AlNb-based lightweight alloy.
Journal of Materials Science & Technology,2020,44:140-147
|
CSCD被引
11
次
|
|
|
|
2.
Zhang H Y. Effect of the primary O phase on thermal deformation behavior of a Ti_2AlNbbased alloy.
Journal of Alloys and Compounds,2020,846:156458
|
CSCD被引
6
次
|
|
|
|
3.
Grigoriev A. In-situsynthesis of Ti_2AlNb-based intermetallic alloy by selective laser melting.
Journal of Alloys and Compounds,2017,704:434-442
|
CSCD被引
9
次
|
|
|
|
4.
Reith M. Processing 4th generation titanium aluminides viaelectron beam based additive manufacturing-characterization of microstructure and mechanical properties.
Materialia,2020,14:100902
|
CSCD被引
3
次
|
|
|
|
5.
Zhang Y R. Microstructure and tensile properties of Ti_2AlNb and Mo-modified Ti_2AlNb alloys fabricated by hot isostatic pressing.
Materials Science and Engineering: A,2020,776:139043
|
CSCD被引
10
次
|
|
|
|
6.
周英豪.
选区激光熔化增材制造高性能Ti-22Al-25Nb高温合金,2020
|
CSCD被引
1
次
|
|
|
|
7.
Youn S J. Elevated temperature compressive deformation behaviors ofγ-TiAl-based Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting.
Intermetallics,2020,124:106859
|
CSCD被引
5
次
|
|
|
|
8.
Yue H Y. Selective electron beam melting of TiAl alloy:metallurgical defects,tensile property,and determination of process window.
Advanced Engineering Materials,2020,22(8):2000194
|
CSCD被引
3
次
|
|
|
|
9.
Cho K. Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting.
Intermetallics,2018,95:1-10
|
CSCD被引
6
次
|
|
|
|
10.
陈玮. 电子束增材制造γ-TiAl显微组织调控与拉伸性能研究.
航空制造技术,2017,60(1/2):37-41
|
CSCD被引
9
次
|
|
|
|
11.
Polozov I. Selective laser melting of Ti_2AlNb-based intermetallic alloy using elemental powders: effect of process parameters and post-treatment on microstructure, composition,and properties.
Intermetallics,2019,112:106554
|
CSCD被引
5
次
|
|
|
|
12.
Polozov I. Synthesis of Ti-5Al,Ti-6Al-7Nb,and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing.
Journal of Alloys and Compounds,2018,763:436-445
|
CSCD被引
9
次
|
|
|
|
13.
唐杨杰. 激光增材制造Ti_2AlNb基合金的组织与性能.
金属热处理,2016,41(4):1-6
|
CSCD被引
6
次
|
|
|
|
14.
Zhou Y H. Selective laser melting of Ti-22Al-25Nb intermetallic:significant effects of hatch distance on microstructural features and mechanical properties.
Journal of Materials Processing Tech,2020,276:116398
|
CSCD被引
6
次
|
|
|
|
15.
Zhou Y H. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: excellent combination of strength and ductility,and unique microstructural features associated.
Acta Materialia,2019,173:117-129
|
CSCD被引
22
次
|
|
|
|
16.
王茂松. 增材制造钛铝合金研究进展.
航空学报,2021,42(7):625263
|
CSCD被引
6
次
|
|
|
|
17.
Lin B C. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting.
Journal of Alloys and Compounds,2020,830:154684
|
CSCD被引
10
次
|
|
|
|
18.
李昂. 金属增材制造技术的关键因素及发展方向.
工程科学学报,2019,41(2):159-173
|
CSCD被引
24
次
|
|
|
|
19.
王虎. 选区熔化3D打印TiAl基合金的研究现状及展望.
表面技术,2021,50(1):173-186
|
CSCD被引
6
次
|
|
|
|
20.
王林. 增材制造TiAl合金的研究现状及展望.
电焊机,2020,50(4):1-12
|
CSCD被引
8
次
|
|
|
|
|