短纤维增强C/C-SiC复合材料的微观结构与力学性能
Microstructure and mechanical property of short fiber reinforced C/C-SiC composites
查看参考文献36篇
文摘
|
综合原料的热物理性能分析和配比设计,实现了C/C复合材料载体孔隙体积的精细控制,采用热压-熔渗两步法在低温条件下制备了具有高致密、低残余Si含量特征的短碳纤维增强C/C-SiC复合材料。系统解析了C/C-SiC复合材料成型过程中的结构演变行为,研究了短纤维增强C/C-SiC复合材料的力学性能和失效机制。结果表明:多孔C/C复合材料载体孔隙的孔径呈双极分布特征,添加芳纶纤维可提高网络孔隙结构的连通性,具有显著的孔隙结构调控作用。SiC基体以网络骨架形态分布于C/C-SiC复合材料内部,与纤维束形成了强界面结合钉扎结构,高含量纤维协同作用下使C/C-SiC复合材料具有优异的综合力学性能,添加芳纶纤维可明显增加复合材料内部裂纹扩展路径,提高C/C-SiC复合材料的断裂韧性。碳纤维的面内各向同性分布及陶瓷相层间均匀分布对C/C-SiC复合材料承载、摩擦稳定性提升均具有积极作用。 |
其他语种文摘
|
One-staged forming of porous C/C composites as well as volume fraction control of pores were realized,based on thermophysical property analysis and proportioning design of raw materials. Short fiber reinforced C/C-SiC composites with high densification and low content of residual Si were prepared by hot-pressing-infiltration two-step method at low temperature.The structural evolution of C/C-SiC composites was analyzed in detail,the mechanical properties as well as failure behaviors were also investigated.Results show that the porous C/C composites present bipolar distribution in pore size,adding aramid fibers is an effective method to improve the connectivity of network pores, exhibiting a significant regulatory effect.Both SiC network skeleton and pinning structure with strong interface between SiC matrix and carbon fiber bundle can entrust the excellent mechanical properties of C/C-SiC composites with high carbon fiber content.In addition,the fracture toughness of C/C-SiC composites can be improved significantly with the addition of aramid fibers,resulting in the increase of crack propagation path.The isotropic distribution of carbon fiber in plane and the uniform distribution of ceramic phase between layers play apositive role in improving the bearing capacity and friction stability of C/C-SiC composites. |
来源
|
材料工程
,2022,50(7):88-101 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000002
|
关键词
|
C/C-SiC复合材料
;
热压-熔渗两步法
;
微观结构
;
力学性能
|
地址
|
1.
中南大学, 粉末冶金国家重点实验室, 长沙
2.
航天材料及工艺研究所, 先进功能复合材料技术国防科技重点实验室, 北京
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
航天动力先进技术湖北省重点实验室开放基金
;
湖南省科技成果转化及产业化计划项目
|
文献收藏号
|
CSCD:7261528
|
参考文献 共
36
共2页
|
1.
Krenkel W. C/C-SiC composites for advanced friction systems.
Advanced Engineering Materials,2002,4(7):427-436
|
CSCD被引
93
次
|
|
|
|
2.
Krenkel W. C/C-SiC composites for hot structures and advanced friction systems.
27th International Cocoa Beach Conference on Advanced Ceramics and Composites:B,2003:583-592
|
CSCD被引
1
次
|
|
|
|
3.
Heidenreich B. Manufacture and test of C/C-SiC sandwich structures.
Ceas Space Journal,2020,12(1):73-84
|
CSCD被引
1
次
|
|
|
|
4.
Patel M. High temperature C/C-SiC composite by liquid silicon infiltration:a literature review.
Bulletin of Materials Science,2012,35(1):63-73
|
CSCD被引
15
次
|
|
|
|
5.
Li F. Microstructures and properties of C/C-SiC composites derived from different gaseous carbon matrix precursors.
Ceramics International,2021,47(21):30777-30789
|
CSCD被引
2
次
|
|
|
|
6.
Wang J. The effects of phenolic resin-derived PyC interlayers on microstructure and mechanical properties of Cf/SiC composites.
Ceramics International,2018,44(14):16157-16163
|
CSCD被引
2
次
|
|
|
|
7.
Krnel K. Carbon/carbon-siliconcarbide dual-matrix composites for brake discs.
Materials and Manufacturing Processes,2008,23(6):587-590
|
CSCD被引
3
次
|
|
|
|
8.
Krenkel W. Ceramic matrix composites for high performance friction applications.
Proceedings of theⅣAdvanced Ceramics and Applications Conference,2017:13-28
|
CSCD被引
1
次
|
|
|
|
9.
孙国帅. C/C-SiC刹车材料的研究进展.
材料导报,2016,30(增刊1):516-519
|
CSCD被引
1
次
|
|
|
|
10.
Xi O Y. Effects of the high-temperature treatment of C/C composites on their tribological properties.
New Carbon Materials,2019,34(5):472-480
|
CSCD被引
1
次
|
|
|
|
11.
Jiang G. Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration.
Composites Science and Technology,2008,68(12):2468-2473
|
CSCD被引
13
次
|
|
|
|
12.
肖鹏. 高性能制动系统用炭纤维增强炭和SiC双基体(C/C-SiC)复合材料.
材料工程,2009(增刊2):263-267
|
CSCD被引
4
次
|
|
|
|
13.
Renz R. Integration of CMC brake disks in automotive brake systems.
International Journal of Applied Ceramic Technology,2012,9(4):712-724
|
CSCD被引
4
次
|
|
|
|
14.
Ma X. Investigation on braking performance and wear mechanism of full-carbon/ceramic braking pairs.
Tribology International,2020,142:105981
|
CSCD被引
6
次
|
|
|
|
15.
Dai J. Role of fiber-matrix adhesion at CFRP stage on microstructure and mechanical properties of C/C-SiC composite.
International Journal of Applied Ceramic Technology,2021,19(1):79-90
|
CSCD被引
2
次
|
|
|
|
16.
Xu J. Mechanical property and toughening mechanism of 2.5DC/C-SiC composites with high textured pyrocarbon interface.
Ceramics International,2021,47(20):29183-29190
|
CSCD被引
1
次
|
|
|
|
17.
李金伟. 短碳纤维含量对温压-熔渗工艺制备C/C-SiC复合材料力学性能的影响.
粉末冶金材料科学与工程,2014,19(5):825-831
|
CSCD被引
2
次
|
|
|
|
18.
马彦. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响.
材料工程,2015,43(4):98-101
|
CSCD被引
2
次
|
|
|
|
19.
杜鹏程. 全长纤维针刺C/C-SiC复合材料的力学与热扩散性能.
矿冶工程,2021,41(3):114-119
|
CSCD被引
2
次
|
|
|
|
20.
陈刘定. 开孔对平纹编织C/SiC陶瓷基复合材料力学行为的影响.
材料工程,2009(9):71-74
|
CSCD被引
3
次
|
|
|
|
|