光固化3D打印陶瓷浆料及流变性研究进展
Research progress in ceramic slurries and rheology viaphotopolymerizationbased 3Dprinting
查看参考文献74篇
文摘
|
基于光固化技术原理的陶瓷3D打印因可制备尺寸精度高、表面光洁度好、显微结构均匀和力学性能优异的复杂结构陶瓷零件而备受关注,是实现高性能陶瓷零件增材制造的重要技术手段之一。该技术的核心是制备同时具有高固含量和良好打印适性要求的陶瓷浆料,其组成对固化效果和打印进程有着至关重要的影响。本文综述了立体光固化(stereolithography,SL)和数字光处理(digital light processing,DLP)两种主流光固化3D打印方法用于光固化陶瓷打印的技术方案和工作原理,比较了两者的优缺点。围绕近年来在陶瓷浆料领域的研究工作,讨论了单体/低聚物和稀释剂、分散剂、陶瓷颗粒物理性质以及固含量等对黏度、剪切稀化/增稠行为、黏弹性、屈服应力等流变行为的影响,并提出了光固化3D打印陶瓷浆料的主要发展趋势和面临的挑战,为构建高固含量光固化3D打印陶瓷浆料提供了一般性指导原则。 |
其他语种文摘
|
Ceramic 3Dprinting based on stereolithography has attracted wide attention because it can fabricate complex ceramic components with high dimensional accuracy,good surface finish,uniform microstructure, and excellent mechanical properties.It is one of the important technical means to achieve high-performance parts by additive manufacturing.The core of the technology is to prepare ceramic slurries with high solid loading and good printability,and its composition has a vital influence on the curing effect and printing process.In this review,two main additive manufacturing methods,stereolithography(SL)and digital light processing(DLP),commonly used in ceramic 3Dprinting were introduced,and advantages and disadvantages of the two methods were compared.Based on the research work in the field of ceramic slurries in recent years,the effects of monomer/oligomer and diluent,dispersant,physical properties of ceramic particles and solid loading on viscosity,shear thinning/thickening behavior,viscoelasticity, yield stress were discussed.Finally,the main development trends and challenges of ceramic slurries viastereolithography were put forward in,and a general guiding principle for the construction of ceramic slurries with high solid loading was provided. |
来源
|
材料工程
,2022,50(7):40-50 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000833
|
关键词
|
陶瓷
;
光固化
;
3D打印
;
固含量
;
流变行为
|
地址
|
1.
苏州大学机电工程学院, 江苏, 苏州
2.
湖南理工学院机械工程学院, 湖南, 岳阳
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
苏州市重点产业技术创新项目
;
江苏省三维打印装备与制造重点实验室开放基金项目
;
江苏省重点研发计划项目
|
文献收藏号
|
CSCD:7261523
|
参考文献 共
74
共4页
|
1.
Chen Z W. 3Dprinting of ceramics:a review.
Journal of the European Ceramic Society,2019,39(4):661-687
|
CSCD被引
63
次
|
|
|
|
2.
刘雨. 陶瓷光固化3D打印技术研究进展.
材料工程,2020,48(9):1-12
|
CSCD被引
20
次
|
|
|
|
3.
Rasaki S A. Photopolymerization-based additive manufacturing of ceramics:a systematic review.
Journal of Advanced Ceramics,2021,10(3):442-471
|
CSCD被引
20
次
|
|
|
|
4.
Zakeri S. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography.
Additive Manufacturing,2020,35:101177
|
CSCD被引
17
次
|
|
|
|
5.
Li M S. Influence of yttria-stabilized zirconia content on rheological behavior and mechanical properties of zirconia-toughened alumina fabricated by paste-based stereolithography.
Journal of Materials Science,2021,56(4):2887-2899
|
CSCD被引
2
次
|
|
|
|
6.
Nie J B. The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing.
Journal of the European Ceramic Society,2021,41(1):646-654
|
CSCD被引
3
次
|
|
|
|
7.
Zhang K Q. Digital light processing of 3Y-TZP strengthened ZrO_2ceramics.
Materials Science and Engineering:A,2020,774:138768
|
CSCD被引
5
次
|
|
|
|
8.
Griffith M L. Freeform fabrication of ceramics viastereolithography.
Journal of the American Ceramic Society,1996,79(10):2601-2608
|
CSCD被引
33
次
|
|
|
|
9.
Santoliquido O. Additive manufacturing of ceramic components by digital light processing: a comparison between the"bottom-up"and the"top-down"approaches.
Journal of the European Ceramic Society,2019,39(6):2140-2148
|
CSCD被引
8
次
|
|
|
|
10.
Zhang K Q. Photosensitive ZrO_2suspensions for stereolithography.
Ceramics International,2019,45(9):12189-12195
|
CSCD被引
3
次
|
|
|
|
11.
Lian Q. Oxygen-controlled bottomup mask-projection stereolithography for ceramic 3D printing.
Ceramics International,2017,43(17):14956-14961
|
CSCD被引
4
次
|
|
|
|
12.
Xing H Y. Preparation and characterization of UV curable Al_2O_3suspensions applying for stereolithography 3Dprinting ceramic microcomponent.
Powder Technology,2018,338:153-161
|
CSCD被引
5
次
|
|
|
|
13.
Borlaf M. Fabrication of ZrO_2and ATZ materials via UV-LCM-DLP additive manufacturing technology.
Journal of the European Ceramic Society,2020,40(4):1574-1581
|
CSCD被引
3
次
|
|
|
|
14.
Borlaf M. Development of UV-curable ZrO_2slurries for additive manufacturing(LCM-DLP)technology.
Journal of the European Ceramic Society,2019,39(13):3797-3803
|
CSCD被引
6
次
|
|
|
|
15.
Chen F. Preparation and biological evaluation of ZrO_2all-ceramic teeth by DLP technology.
Ceramics International,2020,46(8):11268-11274
|
CSCD被引
18
次
|
|
|
|
16.
吴甲民. 陶瓷光固化技术及其应用.
机械工程学报,2020,56(19):221-238
|
CSCD被引
8
次
|
|
|
|
17.
Kotz F. Three-dimensional printing of transparent fused silica glass.
Nature,2017,544(7650):337-339
|
CSCD被引
32
次
|
|
|
|
18.
Xing Z W. Effect of plasticizer on the fabrication and properties of alumina ceramic by stereolithography-based additive manufacturing.
Ceramics International,2018,44(16):19939-19944
|
CSCD被引
6
次
|
|
|
|
19.
Gentry S P. Absorption effects in photopolymerized ceramic suspensions.
Journal of the European Ceramic Society,2013,33(10):1989-1994
|
CSCD被引
6
次
|
|
|
|
20.
Lakhdar Y. Additive manufacturing of advanced ceramic materials.
Progress in Materials Science,2021,116(2/3):100736
|
CSCD被引
23
次
|
|
|
|
|