帮助 关于我们

返回检索结果

Al含量对选区激光熔化Al_xCoCrFeNi(x=0.3,0.5,0.7,1.0)的显微组织及纳米压痕的影响
Influence of Al content on microstructure and nanoindentation of selective laser melting Al_xCoCrFeNi(x=0.3,0.5,0.7,1.0)

查看参考文献21篇

文摘 采用气雾化法制备预合金粉末,通过选区激光熔化(selective laser melting,SLM)制备Al_xCoCrFeNi(x=0.3,0.5, 0.7,1.0)高熵合金。通过X射线衍射仪、扫描电镜以及纳米压痕实验,综合分析Al_xCoCrFeNi的物相、微观组织、硬度、杨氏模量及蠕变曲线,探讨Al含量对Al_xCoCrFeNi显微组织及纳米压痕的影响。结果表明:Al含量对物相组织有显著影响,其中Al_(0.3)CoCrFeNi与Al_(0.5)CoCrFeNi为FCC结构,Al_(0.7)CoCrFeNi和Al_(1.0)CoCrFeNi为BCC/B2结构。Al_(0.3) CoCrFeNi和Al_(0.5)CoCrFeNi主要由等轴晶组成,Al_(0.7)CoCrFeNi和Al_(1.0)CoCrFeNi主要由柱状晶组成。随Al含量增加,孔隙及裂纹等缺陷增加。在Al_(0.3)CoCrFeNi和Al_(0.5)CoCrFeNi中没有观察到明显的熔池形貌。随Al含量增加,样品残余应力增加。随Al含量增加,硬度增加,由Al_(0.3)CoCrFeNi的447HV增加至Al_(1.0)CoCrFeNi的567HV。Al_(0.3)CoCrFeNi杨氏模量约为273GPa,Al_(0.5)CoCrFeNi约为233GPa,Al_(0.7)CoCrFeNi和Al_(1.0)CoCrFeNi杨氏模量相近,分别为240GPa和242GPa,硬度与杨氏模量的变化主要与组织及物相有关。与传统蠕变曲线不同,Al_xCoCrFeNi的纳米压痕蠕变曲线只包括瞬时蠕变和稳态蠕变两个阶段,其蠕变机制主要为位错蠕变,其中Al_(0.7)CoCrFeNi具有最好的抗蠕变性能。Al_(0.3) CoCrFeNi具有最好的打印成形性,其屈服强度为702MPa,伸长率为27.5%。
其他语种文摘 Al_xCoCrFeNi(x=0.3,0.5,0.7,1.0)high-entropy alloy was fabricated by selective laser melting(SLM),and pre-alloyed powder was prepared by gas atomization.The phase composition, microstructure,hardness,Young's modulus and creep curve of Al_xCoCrFeNi were comprehensively analyzed through X-ray diffractometer, scanning electron microscope and nanoindentation experiments,respectively.The influence of Al content on the microstructure and nanoindentation of Al_xCoCrFeNi was discussed.The results show that Al_(0.3)CoCrFeNi and Al_(0.5)CoCrFeNi are FCC structure,while Al_(0.7)CoCrFeNi and Al_(1.0)CoCrFeNi are BCC/B2 structure.The microstructure of Al_(0.3)CoCrFeNi and Al_(0.5)CoCrFeNi are mainly composed of equiaxed crystals,while Al_(0.7)CoCrFeNi and Al_(1.0)CoCrFeNi are mainly composed of columnar crystals.It indicates that the content of Al has great influence on the microstructure of Al_xCoCrFeNi high-entropy alloy.With the increase of Al content,defects such as pores and cracks in the specimens increase.There is no obvious molten pool morphology observed in Al_(0.3)CoCrFeNi and Al_(0.5)CoCrFeNi.The residual stress increases with the increase of Al content.The hardness and Young's modulus of the samples were measured.It was found that with the increase of Al content,the hardness of the sample increases from 447HV to 567HV.The Young's modulus of Al_(0.3)CoCrFeNi is about 273GPa,and Al_(0.5)CoCrFeNi is about 233GPa,while Al_(0.7)CoCrFeNi and Al_(1.0)CoCrFeNi are about 240GPa and 242GPa,respectively. The changes in hardness and Young's modulus are mainly related to the microstructure and phases of specimens.Different from the traditional creep curve,the creep curve of Al_xCoCrFeNi includes only two stages,which are instantaneous creep and steady-state creep.The creep mechanism is mainly dislocation creep.Among the samples,Al_(0.7)CoCrFeNi has the best creep resistance.Al_(0.3) CoCrFeNi has the best print formability,with the yield strength of 702MPa,and the elongation is 27.5%.
来源 材料工程 ,2022,50(6):27-35 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000737
关键词 选区激光熔化 ; Al_xCoCrFeNi ; 显微组织 ; 纳米压痕
地址

中南大学, 粉末冶金国家重点实验室, 长沙

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 金属学与金属工艺
基金 山东省自然科学基金
文献收藏号 CSCD:7261504

参考文献 共 21 共2页

1.  Yeh J W. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes. Adv Eng Mater,2004,6(5):299-303 CSCD被引 1343    
2.  Li Z. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Materialia,2017,136:262-270 CSCD被引 41    
3.  Lee C P. Effect of the aluminium content of AlxCrFe1.5MnNi0.5high-entropy alloys on the corrosion behaviour in aqueous environments. Corrosion Science,2008,50(7):2053-2060 CSCD被引 27    
4.  Yang Y. Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process. Journal of Alloys and Compounds,2021,864:158717 CSCD被引 8    
5.  Jiang L. Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5alloy casting ingot. Intermetallics,2014,44:37-43 CSCD被引 15    
6.  Li R. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting:crack-inhibiting and multiple strengthening mechanisms. Acta Materialia,2020,193:83-98 CSCD被引 89    
7.  林泽桓. 送粉式激光增材制造Al-Mg-Sc-Zr合金的微观组织与力学性能. 中南大学学报(自然科学版),2020,51(11):3055-3063 CSCD被引 4    
8.  郑聃. 选区激光熔化与定向能量沉积NiTi形状记忆合金组织与性能的对比研究. 中南大学学报(自然科学版),2021,28(4):1028-1042 CSCD被引 1    
9.  王银. 选区激光熔化金属材料中的霍尔-佩奇关系. 中南大学学报(自然科学版),2021,28(4):1043-1057 CSCD被引 1    
10.  Niu P D. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting. Intermetallics,2019,104:24-32 CSCD被引 27    
11.  Joseph J. Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys. Materials Science and Engineering:A,2018,733:59-70 CSCD被引 16    
12.  Huang L F. Microstructure evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys by laser melting deposition. Vacuum,2021,183:109875 CSCD被引 2    
13.  Bhowmik A. Deformation behaviour of[001]oriented MgO using combined in-situ nano-indentation and micro-Laue diffraction. Acta Materialia,2018,145:516-531 CSCD被引 2    
14.  Chen T. The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni. Acta Materialia,2017,138:83-91 CSCD被引 3    
15.  Sakharova N A. On the determination of the film hardness in hard film/substrate composites using depth-sensing indentation. Ceramics International,2013,39(6):6251-6263 CSCD被引 3    
16.  Muthupandi G. Pile-up and sink-in nanoindentation behaviors in AlCoCrFeNi multi-phase high entropy alloy. Materials Science and Engineering:A,2017,696:146-154 CSCD被引 3    
17.  Sun Y. Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation. Intermetallics,2018,93:85-88 CSCD被引 3    
18.  Sourav A. Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys. Materials Science and Engineering:A,2020,793:139877 CSCD被引 4    
19.  Sun Z. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing:example of an AlxCoCrFeNi high-entropy alloy. Acta Materialia,2021,204:116505 CSCD被引 17    
20.  Xu Z. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting. Additive Manufacturing,2019,28:766-771 CSCD被引 10    
引证文献 1

1 于丽莹 激光增材制造Al_xCoCrFeNi高熵合金的组织与性能 材料工程,2024,52(1):220-230
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号