增材制造智能材料研究现状及展望
Research status and prospect of additive manufacturing of intelligent materials
查看参考文献114篇
文摘
|
增材制造技术自问世以来成为拓展多学科发展、实现多学科研究融合以及联结材料与产品的关键性技术,该技术颠覆了传统加工设计和制造理念,同时也是实现智能制造的重要方法。智能材料是对环境具有感知、可响应、自修复和自适应的一类材料。将智能材料与增材制造技术有机结合,可实现具有感受外部刺激或环境激活的三维智能器件的一体化制造。智能材料增材制造技术被广泛应用于个性化医疗、柔性电子和软体机器人等领域。本文对增材制造中所涉及的智能材料进行综述,介绍通过增材制造方法对金属类、高分子类和陶瓷类智能材料所带来的优势及面临的问题。增材制造技术作为实现设计、材料和结构有机融合的有效手段,将成为推动智能材料发展的关键。 |
其他语种文摘
|
Additive manufacturing technology as revolutionary manufacturing technology has attracted much attention.This technology transformed traditional processing design and manufacturing concepts and promoted the development of intelligent manufacturing.Intelligent material is a kind of material that has the ability of self-perception,autonomous response,self-healing and adaptation.The combination of intelligent materials and additive manufacturing technology can realize the integrated manufacturing of three-dimensional smart devices with the ability to sense external stimuli or environmental activation.This technology has been widely used in fields such as biomedical devices, flexible electronics,soft robotics,and other fields.Additive manufactured intelligent materials,and the advantages and problems of additive manufactured intelligent materials of metals,polymers,and ceramics were reviewed.As a technical means to realize the organic integration of design,material and structure,additive manufacturing technology will become the key to promote the development of intelligent materials. |
来源
|
材料工程
,2022,50(6):12-26 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.001091
|
关键词
|
增材制造
;
智能材料
;
4D打印
;
智能器件
|
地址
|
1.
华中科技大学, 材料成形与模具技术国家重点实验室, 武汉
2.
中国地质大学(武汉)工程学院, 武汉
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7261503
|
参考文献 共
114
共6页
|
1.
史玉升. 4D打印——智能构件的增材制造技术.
机械工程学报,2020,56(15):1-25
|
CSCD被引
17
次
|
|
|
|
2.
曾成均. 激励响应复合材料的4D打印及其应用研究进展.
材料工程,2020,48(8):1-13
|
CSCD被引
2
次
|
|
|
|
3.
Takagi T. A concept of intelligent materials.
Journal of Intelligent Material Systems and Structures,1990,1(2):149-156
|
CSCD被引
7
次
|
|
|
|
4.
Ali M H. 4Dprinting:a critical review of current developments,and future prospects.
The International Journal of Advanced Manufacturing Technology,2019,105(1/4):701-717
|
CSCD被引
1
次
|
|
|
|
5.
Elahinia M H. Manufacturing and processing of NiTi implants:a review.
Progress in Materials Science,2012,57(5):911-946
|
CSCD被引
45
次
|
|
|
|
6.
黄海友. 高性能Cu基形状记忆合金组织设计研究进展.
中国材料进展,2016,35(11):835-842
|
CSCD被引
4
次
|
|
|
|
7.
Maruyama T. Ferrous(Fe-based)shape memory alloys(SMAs):properties,processing and applications.
Shape Memory and Superelastic Alloys,2011:141-159
|
CSCD被引
2
次
|
|
|
|
8.
Lester B T. Review and perspectives:shape memory alloy composite systems.
Acta Mechanica,2015,226(12):3907-3960
|
CSCD被引
8
次
|
|
|
|
9.
Parvizi S. Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods:a review.
Progress in Materials Science,2021,117:100739
|
CSCD被引
7
次
|
|
|
|
10.
Clare A T. Selective laser melting of high aspect ratio 3Dnickel-titanium structures two way trained for MEMS applications.
International Journal of Mechanics and Materials in Design,2008,4(2):181-187
|
CSCD被引
8
次
|
|
|
|
11.
Krishna B V. Laser processing of net-shape NiTi shape memory alloy.
Metallurgical and Materials Transactions A,2007,38(5):1096-1103
|
CSCD被引
9
次
|
|
|
|
12.
Wang J. Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing.
Materials Science and Engineering:A,2019,749(11):218-222
|
CSCD被引
4
次
|
|
|
|
13.
Elahinia M. Fabrication of NiTi through additive manufacturing: a review.
Progress in Materials Science,2016,83:630-663
|
CSCD被引
54
次
|
|
|
|
14.
Zhang Q. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability.
Applied Materials Today,2020,19:100547-100559
|
CSCD被引
5
次
|
|
|
|
15.
尹燕. 三元Ni-Ti基形状记忆合金的研究现状.
材料导报,2006,20(12):70-73
|
CSCD被引
6
次
|
|
|
|
16.
Umale T. The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys.
Scripta Materialia,2019,161:78-83
|
CSCD被引
1
次
|
|
|
|
17.
Nespoli A. Phase transition and mechanical damping properties:a DMTA study of NiTiCu shape memory alloys.
Intermetallics,2013,32:394-400
|
CSCD被引
2
次
|
|
|
|
18.
Wang M. Martensitic transformation involved mechanical behaviors and wide hysteresis of NiTiNb shape memory alloys.
Progress in Natural Science:Materials International,2012,22(2):130-138
|
CSCD被引
5
次
|
|
|
|
19.
Elahinia M. Additive manufacturing of NiTiHf high temperature shape memory alloy.
Scripta Materialia,2018,145:90-94
|
CSCD被引
7
次
|
|
|
|
20.
Shiva S. Influence of Cu addition to improve shape memory properties in NiTi alloys developed by laser rapid manufacturing.
Journal of Laser Micro Nanoengineering,2016,11(2):153-157
|
CSCD被引
1
次
|
|
|
|
|